Full metadata record

DC Field Value Language
dc.contributor.authorLee, Junho-
dc.contributor.authorJang, Kyu-bong-
dc.contributor.authorLee, Seokhyun-
dc.contributor.authorBin Mo, Chan-
dc.contributor.authorKim, Hyo-kyu-
dc.contributor.authorPark, Kyoung Ryeol-
dc.contributor.authorKim, Jongsik-
dc.contributor.authorBang, Junghwan-
dc.contributor.authorJung, In Chul-
dc.contributor.authorKim, Jong Cheol-
dc.contributor.authorMhin, Sungwook-
dc.date.accessioned2024-01-19T09:31:35Z-
dc.date.available2024-01-19T09:31:35Z-
dc.date.created2023-06-01-
dc.date.issued2023-06-
dc.identifier.issn0272-8842-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113687-
dc.description.abstractWe develop the MgO-ZrO2-TiC (MSZ-TiC) composite for improving the mechanical properties. To increase the mechanical hardness, spark plasma sintering technique was used, enabling rapid heating and subsequent quenching for the stabilization of tetragonal zirconia as well as the formation of the composites. Titanium carbide was applied as reinforcing material to improve the fracture toughness. Also, effect of the sintering temperature on phase evolution of the composite is investigated; with increasing sintering temperature, the monoclinic ZrO2 (m-ZrO2) gradually transforms to tetragonal ZrO2 (t-ZrO2), while maintaining the TiC structure. Combined with material characterization, mechanical properties depending on ZrO2 phase in MSZ-TiC are discussed. As a result, increased hardness (16.3 GPa) and fracture toughness (5.2 MPa m1/2) were observed from optimized MSZ-TiC sintered at 1400 degrees C mainly due to phase transformation of ZrO2. This work can provide an engineering strategy to improve the mechanical properties of ZrO2 based composites, which can be widely applied for industrial application.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleMechanical properties of TiC reinforced MgO-ZrO2 composites via spark plasma sintering-
dc.typeArticle-
dc.identifier.doi10.1016/j.ceramint.2023.02.091-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCeramics International, v.49, no.11, pp.17255 - 17260-
dc.citation.titleCeramics International-
dc.citation.volume49-
dc.citation.number11-
dc.citation.startPage17255-
dc.citation.endPage17260-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000987778700001-
dc.identifier.scopusid2-s2.0-85148764207-
dc.relation.journalWebOfScienceCategoryMaterials Science, Ceramics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFRACTURE-TOUGHNESS-
dc.subject.keywordPlusTETRAGONAL ZRO2-
dc.subject.keywordPlusZIRCONIA-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusHARDNESS-
dc.subject.keywordPlusCARBIDE-
dc.subject.keywordAuthorTiC-
dc.subject.keywordAuthorSpark plasma sintering-
dc.subject.keywordAuthorHardness-
dc.subject.keywordAuthorFracture toughness-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE