Full metadata record

DC Field Value Language
dc.contributor.authorJeong, Jinmo-
dc.contributor.authorKim, Tae Hee-
dc.contributor.authorPark, Sangun-
dc.contributor.authorLee, Junseok-
dc.contributor.authorChae, Uikyu-
dc.contributor.authorJeong, Jin-Young-
dc.contributor.authorPark, Seongjin-
dc.contributor.authorKim, Soonwoo-
dc.contributor.authorCHO, IL JOO-
dc.contributor.authorJung, Youngmee-
dc.contributor.authorYi, Hyunjung-
dc.date.accessioned2024-01-19T09:31:46Z-
dc.date.available2024-01-19T09:31:46Z-
dc.date.created2023-05-25-
dc.date.issued2023-06-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113696-
dc.description.abstractRealizing a long-duration stable electrical contact with peripheral nerves in vivo is challenging due to the fragility and tubular shapes of peripheral nerves and the foreign body response caused by implanted devices at the nerve -device interface. Herein, we report the development of a hybrid neural interfacing device (HNID) based on Au wires with a nanogranular Au shell and hydrogel layer used to achieve a non-inflammatory, stable, and bi-directional bioelectronic interface with peripheral nerves. A natural hydrogel made up of genipin-crosslinked gelatin is developed to produce a three-dimensional network structure displaying excellent biocompatibility, sufficient ionic conductivity, and durable mechanical property. Neural electrodes based on Au wires with a nanogranular Au shell enable effective ionic/electrical coupling and neural communication with the nerve through the hydrogel layer. In in vivo studies involving rats, an implanted HNID suppresses the inflammatory response and fibrosis and causes negligible damage to the sciatic nerve, enabling stable stimulation of the nerve and recording of the neural signal of the sciatic nerve for 15 days after implantation. Our approach could extend the applicability of various inorganic electrode materials for the development of nerve-interfacing bioelectronics displaying high performance and long-term stability.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHybrid neural interfacing devices based on Au wires with nanogranular Au shell and hydrogel layer for anti-inflammatory and bi-directional neural communications-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2023.142966-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.465-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume465-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000986068700001-
dc.identifier.scopusid2-s2.0-85152643487-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusGELATIN-
dc.subject.keywordPlusSOFT-
dc.subject.keywordPlusBIOMATERIALS-
dc.subject.keywordPlusSTIMULATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusDELIVERY-
dc.subject.keywordPlusDRUG-
dc.subject.keywordAuthorImplantable bioelectronic devices-
dc.subject.keywordAuthorPeripheral nerve electrodes-
dc.subject.keywordAuthorInflammation response-
dc.subject.keywordAuthorHydrogels-
dc.subject.keywordAuthorNeural communications-
dc.subject.keywordAuthorAu wires-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE