Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jeongeun-
dc.contributor.authorKim, Minjun-
dc.contributor.authorChoi, Minsu-
dc.contributor.authorKu, Minkyeong-
dc.contributor.authorKam, Dayoung-
dc.contributor.authorKim, Sang-Ok-
dc.contributor.authorChoi, Wonchang-
dc.date.accessioned2024-01-19T09:31:50Z-
dc.date.available2024-01-19T09:31:50Z-
dc.date.created2023-05-18-
dc.date.issued2023-06-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113699-
dc.description.abstractDue to vast sodium reserves, sodium-ion batteries (SIBs) are more cost-efficient to produce than lithium-ion batteries. Therefore, they are actively researched as next-generation energy storage materials. Antimony is a promising anode material for SIB owing to its high theoretical capacity (660 mA h g-1) and an appropriate sodiation voltage. However, due to the rapid volume change during sodium intercalation and deintercalation, cycling stability is poor, presenting a significant obstacle to the practical application of SIBs. Alleviating the Sb volume expansion throughout the charging and discharging processes is the key to the practical implementation of Sb-based anodes. Herein, Sb/C-SiOC composites are prepared using the hydrogen bonding-based adsorption properties of metal-organic frameworks (MOFs). The final product, the Sb/C-SiOC composites, exhibited significantly improved cycle performance, such as maintaining the initial capacity after 200 cycles by the SiOC matrix acting as a conductive buffer. Additionally, the presence of MOF-derived mesoporous carbon and SiOC contributed to the improved rate performance. The hydrogen bond-based adsorption properties of the MOFs used in this study can be effectively applied to uniformly introduce a matrix or coating layer that relieves the volume expansion of high-capacity composite anodes, making it an effective strategy for developing alloy-based energy storage materials.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleSb/C composite embedded in SiOC buffer matrix via dispersion property control for novel anode material in sodium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2023.232908-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Power Sources, v.568-
dc.citation.titleJournal of Power Sources-
dc.citation.volume568-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000969029100001-
dc.identifier.scopusid2-s2.0-85151259683-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusLITHIUM-ION-
dc.subject.keywordPlusSILICONE OIL-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusOXIDES-
dc.subject.keywordPlusCYCLE-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorAntimony-
dc.subject.keywordAuthorEnergy storage materials-
dc.subject.keywordAuthorHydrogen -bonding-
dc.subject.keywordAuthorMetal -organic framework-
dc.subject.keywordAuthorSodium -ion battery-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE