Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chae, Ari | - |
dc.contributor.author | Murali, G. | - |
dc.contributor.author | Lee, Seul-Yi | - |
dc.contributor.author | Gwak, Jeonghwan | - |
dc.contributor.author | Kim, Seon Joon | - |
dc.contributor.author | Jeong, Yong Jin | - |
dc.contributor.author | Kang, Hansol | - |
dc.contributor.author | Park, Seongmin | - |
dc.contributor.author | Lee, Albert S. | - |
dc.contributor.author | Koh, Dong-Yeun | - |
dc.contributor.author | In, Insik | - |
dc.contributor.author | Park, Soo-Jin | - |
dc.date.accessioned | 2024-01-19T09:32:15Z | - |
dc.date.available | 2024-01-19T09:32:15Z | - |
dc.date.created | 2023-03-23 | - |
dc.date.issued | 2023-06 | - |
dc.identifier.issn | 1616-301X | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/113719 | - |
dc.description.abstract | Very recently, MXene-based wearable hydrogels have emerged as promising candidates for epidermal sensors due to their tissue-like softness and unique electrical and mechanical properties. However, it remains a challenge to achieve MXene-based hydrogels with reliable sensing performance and prolonged service life, because MXene inevitably oxidizes in water-containing system of the hydrogels. Herein, catechol-functionalized poly(vinyl alcohol) (PVA-CA)-based hydrogels is proposed to inhibit the oxidation of MXene, leading to rapid self-healing and superior strain sensing behaviors. Sufficient interaction of hydrophobic catechol groups with the MXene surface reduces the oxidation-accessible sites in the MXene for reaction with water and eventually suppresses the oxidation of MXene in the hydrogel. Furthermore, the PVA-CA-MXene hydrogel is demonstrated for use as a strain sensor for real-time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA-CA-MXene hydrogel sensor can be accurately classified using deep learning models. | - |
dc.language | English | - |
dc.publisher | John Wiley & Sons Ltd. | - |
dc.title | Highly Oxidation-Resistant and Self-Healable MXene-Based Hydrogels for Wearable Strain Sensor | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/adfm.202213382 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Advanced Functional Materials, v.33, no.24 | - |
dc.citation.title | Advanced Functional Materials | - |
dc.citation.volume | 33 | - |
dc.citation.number | 24 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000941940000001 | - |
dc.identifier.scopusid | 2-s2.0-85149393653 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | SURFACE FUNCTIONALIZATION | - |
dc.subject.keywordPlus | NANOSHEETS | - |
dc.subject.keywordPlus | COMPOSITE | - |
dc.subject.keywordAuthor | deep learning | - |
dc.subject.keywordAuthor | hydrogels | - |
dc.subject.keywordAuthor | MXenes | - |
dc.subject.keywordAuthor | oxidation | - |
dc.subject.keywordAuthor | poly(vinyl alcohol) | - |
dc.subject.keywordAuthor | sensors | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.