Full metadata record

DC Field Value Language
dc.contributor.authorAkpe, Shedrack G.-
dc.contributor.authorChoi, Sun Hee-
dc.contributor.authorHam, Hyung Chul-
dc.date.accessioned2024-01-19T09:32:59Z-
dc.date.available2024-01-19T09:32:59Z-
dc.date.created2023-06-01-
dc.date.issued2023-05-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113755-
dc.description.abstractShorter chain alcohols, as opposed to longer ones, are beneficial as biomass feedstock for chemicals and fuels, including hydrogen production. More so, it has been demonstrated that carbon-carbon rather than carbon-oxygen bond-cleaving activity determines the product selectivity of a metal catalyst for higher oxygenates reforming. In this report, we investigate the direct C-2-C-3 bond-cleaving activity of xylitol via first-principles, periodic density functional theory calculations to identify the differences in activities between single-crystal catalysts (SCCs) and single-atom catalysts (SACs). A comparison of the kinetic barriers revealed that xylitol's C-C bond scission appears to be a near-impossible task on SCCs. However, SACs demonstrated higher performance. For example, Ir-1/MgO and Ir-1/MgO_Ovac (having surface oxygen vacancy) yielded similar to 72% and 54% decrease, respectively, in Gibb's free activation energy compared to Ir (111) at the xylitol reforming operating temperature of 473 K. Furthermore, electronic structure calculations revealed an up-shift in the DOS for the surface M-1 atoms in all investigated SACs compared to the surface atoms of their respective SCCs, resulting in M-1 higher d-band center and stronger adsorbate (s) binding. This study highlights the importance of SACs for boosting the atom efficiency of costly metals while also offering a new strategy for tuning the activity of catalytic reactions. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).-
dc.languageEnglish-
dc.publisherAmerican Institute of Physics Publising LLC-
dc.titleDirect C-C bond scission of xylitol to ethylene and propylene glycol precursors using single-atom catalysts (SACs) anchored on MgO-
dc.typeArticle-
dc.identifier.doi10.1063/5.0146265-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPL Materials, v.11, no.5-
dc.citation.titleAPL Materials-
dc.citation.volume11-
dc.citation.number5-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000985102800001-
dc.identifier.scopusid2-s2.0-85159556359-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusETHANOL OXIDATION REACTION-
dc.subject.keywordPlusO-H-
dc.subject.keywordPlusHYDROGENATION-
dc.subject.keywordPlusDEHYDRATION-
dc.subject.keywordPlusXYLOSE-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusLIGNIN-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusHYDROGENOLYSIS-
dc.subject.keywordPlusPT(111)-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE