Full metadata record

DC Field Value Language
dc.contributor.authorJin, Youngho-
dc.contributor.authorSeong, Honggyu-
dc.contributor.authorHa Moon, Joon-
dc.contributor.authorLee, So Yi-
dc.contributor.authorKim, Sung Kuk-
dc.contributor.authorYang, MinHo-
dc.contributor.authorLee, Jin Bae-
dc.contributor.authorCho, Se Youn-
dc.contributor.authorChoi, Jaewon-
dc.date.accessioned2024-01-19T09:33:32Z-
dc.date.available2024-01-19T09:33:32Z-
dc.date.created2023-03-16-
dc.date.issued2023-05-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113781-
dc.description.abstractWith growing demands for large-scale energy storage, metal sulfides have received great attention due to their high theoretical capacity as anode materials for sodium-ion batteries (SIBs). However, metal sulfides have a problem of poor stability. Thus, it is important to find suitable solutions. In this work, uniform ZnS nanospheres (ZnS NSs) are synthesized through a wet chemical method. And then, by compounding with reduced graphene oxide (rGO), ZnS NSs@rGO are synthesized in which ZnS NSs are evenly distributed on rGO. When we evaluate the cycle performance, ZnS NSs@rGO deliver a high discharge capacity of 634.6 mA h g-1 at a current density of 0.5 Ag-1 after 1000 cycles. Through charge/discharge processes of in-situ XRD analysis, we confirm the sodiation/desodiation mechanism of ZnS NSs@rGO.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleStudy on colloidal synthesis of ZnS nanospheres embedded in reduced graphene oxide materials for sodium-ion batteries and energy storage mechanism-
dc.typeArticle-
dc.identifier.doi10.1016/j.jallcom.2023.169076-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Alloys and Compounds, v.943-
dc.citation.titleJournal of Alloys and Compounds-
dc.citation.volume943-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000931277200001-
dc.identifier.scopusid2-s2.0-85147414510-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusPERFORMANCE ANODE MATERIAL-
dc.subject.keywordPlusNA-ION-
dc.subject.keywordPlusLITHIUM-ION-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCES-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusDOPED CARBON-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordAuthorSodium-ion batteries-
dc.subject.keywordAuthorZinc sulfide-
dc.subject.keywordAuthorReduced graphene oxide-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorIn-situ XRD-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE