Full metadata record

DC Field Value Language
dc.contributor.authorShin, Eul-Yong-
dc.contributor.authorChoi, Su Bin-
dc.contributor.authorLee, Jong Ho-
dc.contributor.authorYoo, Byungwook-
dc.contributor.authorHan, Chul Jong-
dc.contributor.authorPark, So Hyun-
dc.contributor.authorNoh, Jun Hong-
dc.contributor.authorKim, Jong-Woong-
dc.contributor.authorSon, Hae Jung-
dc.date.accessioned2024-01-19T09:33:39Z-
dc.date.available2024-01-19T09:33:39Z-
dc.date.created2023-03-10-
dc.date.issued2023-05-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113787-
dc.description.abstractTo realize flexible and wearable electronic devices in the future, it is important to develop flexible transparent electrodes while replacing indium tin oxide-based transparent electrodes. Herein, a highly conductive transparent electrode based on hybrid materials of MXene nanosheet films and Ag nanowires (AgNWs) is reported, which synergistically combines the advantageous properties of each material. MXene/AgNW/colorless polyimide (cPI) hybrid electrode is prepared utilizing reverse sequential processing of MXene nanosheets and AgNWs and exhibits significantly improved conductivity and transmittance compared with the MXene/cPI electrode. Furthermore, owing to the abundant hydrophilic termination groups (-O and -OH) on the MXene surface, the MXene/AgNW/cPI hybrid electrode shows hydrophilic surface properties and a highly uniform film. Therefore, the MXene/AgNW/cPI hybrid electrode exhibits higher transmittance at 550 nm to 79% than MXene/cPI electrode (59%) and considerably lower sheet resistance (13.08 ohm sq(-1)) than MXene/cPI electrode (113.6 ohm sq(-1)). Flexible organic photovoltaic devices fabricated with MXene/AgNW/cPI hybrid electrode achieve higher power conversion efficiency of 10.3% compared with 6.70% of the corresponding MXene/cPI electrode. These results provide the great potential of Ti3C2-based MXene hybrid electrode as a flexible transparent electrode, paving the way for various and wider range of applications include solar cells and light-emitting diodes.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleAn Inverted Layer-by-Layer Process to Enable Ultrasmooth MXene-Ag Nanowire Hybrid Electrode for Organic Photovoltaics-
dc.typeArticle-
dc.identifier.doi10.1002/solr.202201130-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSolar RRL, v.7, no.9-
dc.citation.titleSolar RRL-
dc.citation.volume7-
dc.citation.number9-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000935481100001-
dc.identifier.scopusid2-s2.0-85147971032-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusRESISTANT-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorAg nanowires-
dc.subject.keywordAuthorhybrid electrodes-
dc.subject.keywordAuthorlayer-by-layer processes-
dc.subject.keywordAuthorMXenes-
dc.subject.keywordAuthororganic photovoltaics-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE