Full metadata record

DC Field Value Language
dc.contributor.authorRahman, Evandi-
dc.contributor.authorHong, Sukhwa-
dc.contributor.authorLee, Jaesang-
dc.contributor.authorHong, Seok Won-
dc.contributor.authorCho, Kangwoo-
dc.date.accessioned2024-01-19T09:34:27Z-
dc.date.available2024-01-19T09:34:27Z-
dc.date.created2023-04-27-
dc.date.issued2023-04-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113824-
dc.description.abstractReactive chlorine-mediated electrochemical water treatment necessitates selective chlorine evolution reaction (ClER) versus parallel oxygen evolution reaction (OER) in mild pH (7-10), with minimal deployments of precious electrocatalysts. This study reports Ni0.33Fe0.67Oy/TiO2 heterojunction anode prepared by a straightforward sol-gel coating with thermal decomposition at 425 degrees C. The ClER current efficiency (CE, 70%) and energy efficiency (2.3 mmol W h-1) were comparable to benchmarking Ir7Ta3Oy/TiO2 at 30 mA cm-2 in 50 mM NaCl solutions with near-neutral pH. Correlations of ClER CE of variable NixFe1-xOy/TiO2 (x: 0.33, 0.8-1) with the flat-band potential and p-band center, as experimental descriptors for surface charge density, nominated the outer TiO2 to be the active ClER center. The underlying Ni0.33Fe0.67Oy, characterized as biphasic NiFe2O4 and NiO, effectively lowered the O binding energy of TiO2 by electronic interaction across the junction. The OER activity of Ni0.33Fe0.67Oy superior to the other Fe-doped Ni oxides suggested that the conductive OER intermediates generated on Ni0.33Fe0.67Oy could also facilitate the ClER as an ohmic contact. Stability tests and NH4+ degradation in synthetic and real wastewater confirmed the feasibility of Ni0.33Fe0.67Oy/TiO2 heterojunction anode for mediated water treatments in mild pH.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleNi-Fe Oxides/TiO2 Heterojunction Anodes for Reactive Chlorine Generation and Mediated Water Treatment-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.3c00581-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.15, no.14, pp.17867 - 17878-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume15-
dc.citation.number14-
dc.citation.startPage17867-
dc.citation.endPage17878-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000962326100001-
dc.identifier.scopusid2-s2.0-85151333054-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN EVOLUTION REACTION-
dc.subject.keywordPlusOXIDE ELECTROCATALYSTS-
dc.subject.keywordPlusTHIN-FILM-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusALKALINE-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusCATALYSIS-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordPlusTIO2-
dc.subject.keywordAuthorchlorine evolution reaction-
dc.subject.keywordAuthorNi-
dc.subject.keywordAuthorFe oxide-
dc.subject.keywordAuthorwater treatment-
dc.subject.keywordAuthorTiO2-
dc.subject.keywordAuthordescriptor-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE