Full metadata record

DC Field Value Language
dc.contributor.authorYang, Seok Hwan-
dc.contributor.authorJung, Wonsang-
dc.contributor.authorLee, Hyeonggeon-
dc.contributor.authorShin, Sang-Hun-
dc.contributor.authorLee, Seung Jae-
dc.contributor.authorCha, Min Suc-
dc.contributor.authorChoi, Woong-
dc.contributor.authorOh, Seong-Geun-
dc.contributor.authorLee, Ki Bong-
dc.contributor.authorLee, Ung-
dc.contributor.authorWon, Da Hye-
dc.contributor.authorLee, Jang Yong-
dc.date.accessioned2024-01-19T09:34:30Z-
dc.date.available2024-01-19T09:34:30Z-
dc.date.created2023-04-27-
dc.date.issued2023-04-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113827-
dc.description.abstractAnion exchange membranes (AEMs) and ionomers are keys for electrochemical CO2 reduction (eCO2R), but their development and multiple roles have not been intensively investigated. This study demonstrates HQPC-tmIM, a polycarbazole-based anion-conducting material, as a commercially viable AEM and reveals through multiphysics model simulation key descriptors governing eCO2R by exploiting the extraordinary membrane properties of HQPC-tmIM. The mechanical/chemical stability of HQPC-tmIM showed superior eCO2R performance in a membrane electrode assembly electrolyzer (MEA) in comparison to a commercial AEM (Sustainion). The CO partial current density (jCO) of -603 mA cm-2 on HQPC-tmIM MEA is more than twice that of Sustainion MEA and is achieved by only introducing HQPC-tmIM AEM and binder. The mutiphysics model revealed that the well-constructed membrane morphology of HQPC-tmIM leads to the outstanding membrane conductivity, and it enables high jCO through the facilitated charge transfer in overall reactions. This research suggests guidelines for developing a commercially viable AEM and ionomer for eCO2R.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleMembrane Engineering Reveals Descriptors of CO2 Electroreduction in an Electrolyzer-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.3c00420-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters, v.8, no.4, pp.1976 - 1984-
dc.citation.titleACS Energy Letters-
dc.citation.volume8-
dc.citation.number4-
dc.citation.startPage1976-
dc.citation.endPage1984-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000967376700001-
dc.identifier.scopusid2-s2.0-85151326351-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusANION-EXCHANGE MEMBRANE-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusAMMONIUM-
dc.subject.keywordPlusCATIONS-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE