Full metadata record

DC Field Value Language
dc.contributor.authorGong, Sanghyuk-
dc.contributor.authorLee, Yeongje-
dc.contributor.authorChoi, Jinkwan-
dc.contributor.authorLee, Minah-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorJeong, Sunho-
dc.contributor.authorKim, Hyung-Seok-
dc.date.accessioned2024-01-19T10:00:39Z-
dc.date.available2024-01-19T10:00:39Z-
dc.date.created2023-02-03-
dc.date.issued2023-04-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113890-
dc.description.abstractSiOx is a promising next-generation anode material for lithium-ion batteries. However, its commercial adoption faces challenges such as low electrical conductivity, large volume expansion during cycling, and low initial Coulombic efficiency. Herein, to overcome these limitations, an eco-friendly in situ methodology for synthesizing carbon-containing mesoporous SiOx nanoparticles wrapped in another carbon layers is developed. The chemical reactions of vinyl-terminated silanes are designed to be confined inside the cationic surfactant-derived emulsion droplets. The polyvinylpyrrolidone-based chemical functionalization of organically modified SiO2 nanoparticles leads to excellent dispersion stability and allows for intact hybridization with graphene oxide sheets. The formation of a chemically reinforced heterointerface enables the spontaneous generation of mesopores inside the thermally reduced SiOx nanoparticles. The resulting mesoporous SiOx-based nanocomposite anodes exhibit superior cycling stability (approximate to 100% after 500 cycles at 0.5 A g(-1)) and rate capability (554 mAh g(-1) at 2 A g(-1)), elucidating characteristic synergetic effects in mesoporous SiOx-based nanocomposite anodes. The practical commercialization potential with a significant enhancement in initial Coulombic efficiency through a chemical prelithiation reaction is also presented. The full cell employing the prelithiated anode demonstrated more than 2 times higher Coulombic efficiency and discharge capacity compared to the full cell with a pristine anode.-
dc.languageEnglish-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleIn Situ Mesopore Formation in SiOx Nanoparticles by Chemically Reinforced Heterointerface and Use of Chemical Prelithiation for Highly Reversible Lithium-Ion Battery Anode-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202206238-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall, v.19, no.16-
dc.citation.titleSmall-
dc.citation.volume19-
dc.citation.number16-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000908902100001-
dc.identifier.scopusid2-s2.0-85146093849-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusCOMPOSITE ANODES-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusPOROUS SILICON-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthoranodes-
dc.subject.keywordAuthorlithium-ion batteries-
dc.subject.keywordAuthormesoporous-
dc.subject.keywordAuthorprelithiation-
dc.subject.keywordAuthorSiOx nanoparticles-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE