Full metadata record

DC Field Value Language
dc.contributor.authorJeong, Sohyeon-
dc.contributor.authorKang, Hyun Wook-
dc.contributor.authorKim, So Hyun-
dc.contributor.authorHong, Gyu-Sang-
dc.contributor.authorNam, Min-Ho-
dc.contributor.authorSeong, Jihye-
dc.contributor.authorYoon, Eui-Sung-
dc.contributor.authorCho, Il-Joo-
dc.contributor.authorChung, Seok-
dc.contributor.authorBang, Seokyoung-
dc.contributor.authorKim, Hong Nam-
dc.contributor.authorChoi, Nakwon-
dc.date.accessioned2024-01-19T10:01:08Z-
dc.date.available2024-01-19T10:01:08Z-
dc.date.created2023-05-04-
dc.date.issued2023-03-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113907-
dc.description.abstractAnisotropically organized neural networks are indispensable routes for functional connectivity in the brain, which remains largely unknown. While prevailing animal models require additional preparation and stimulation-applying devices and have exhibited limited capabilities regarding localized stimulation, no in vitro platform exists that permits spatiotemporal control of chemo-stimulation in anisotropic three-dimensional (3D) neural networks. We present the integration of microchannels seamlessly into a fibril-aligned 3D scaffold by adapting a single fabrication principle. We investigated the underlying physics of elastic microchannels' ridges and interfacial sol-gel transition of collagen under compression to determine a critical window of geometry and strain. We demonstrated the spatiotemporally resolved neuromodulation in an aligned 3D neural network by local deliveries of KCl and Ca2+ signal inhibitors, such as tetrodotoxin, nifedipine, and mibefradil, and also visualized Ca2+ signal propagation with a speed of similar to 3.7 mu m/s. We anticipate that our technology will pave the way to elucidate functional connectivity and neurological diseases associated with transsynaptic propagation.-
dc.languageEnglish-
dc.publisherAmerican Association for the Advancement of Science-
dc.titleIntegration of reconfigurable microchannels into aligned three-dimensional neural networks for spatially controllable neuromodulation-
dc.typeArticle-
dc.identifier.doi10.1126/sciadv.adf0925-
dc.description.journalClass1-
dc.identifier.bibliographicCitationScience Advances, v.9, no.10-
dc.citation.titleScience Advances-
dc.citation.volume9-
dc.citation.number10-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000960951400016-
dc.identifier.scopusid2-s2.0-85150002339-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHERAPY-
dc.subject.keywordPlusDRUG-
dc.subject.keywordPlusPOLYMERIZATION-
dc.subject.keywordPlusOSTEOPOROSIS-
dc.subject.keywordPlusNANOGELS-
dc.subject.keywordPlusPROTOCOL-
dc.subject.keywordPlusCELLS-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE