Full metadata record

DC Field Value Language
dc.contributor.authorKhan, Sovann-
dc.contributor.authorPoliukhova, Valeriia-
dc.contributor.authorTamir, Nomin-
dc.contributor.authorPark, Jaehyun-
dc.contributor.authorSuzuki, Norihiro-
dc.contributor.authorTerashima, Chiaki-
dc.contributor.authorKatsumata, Ken-Ichi-
dc.contributor.authorCho, So-Hye-
dc.date.accessioned2024-01-19T10:01:48Z-
dc.date.available2024-01-19T10:01:48Z-
dc.date.created2023-04-06-
dc.date.issued2023-03-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113936-
dc.description.abstractIt is widely known that semiconductors such as ZnO and ZnS tend to be unstable in water-splitting photocatalysis due to self-corrosion by the photogenerated charges under prolonged light irradiation. In this work, we demonstrate that proper engineering of photodeposition of Rh species on ZnO-ZnS heterostructure (ZnO/ZnS) can enhance their photocatalytic activity and secure their stability at the same time. During the Rh photodeposition, both electrons and holes generated on the surface of ZnO/ZnS contributed to the formation of Rh-0 metal and Rh-oxides on its surface. Our results have shown that as little as 0.02 at.% of Rh photodeposition can dramatically increase the activity and reduce self-corrosion of ZnO/ZnS during photocatalytic H-2 production from pure water. The average H-2 production rate of our optimal catalyst was 0.05 at.%. Rh-loaded ZnO/ZnS was similar to 5.31 mmol(-1) g(-1) h(-1), reaching a maximum quantum efficiency of 22.9% at 365 nm. (c) 2022 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleDual function of rhodium photodeposition on ZnO/ZnS: Enhanced H2 production and photocorrosion suppression in water-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2022.12.045-
dc.description.journalClass1-
dc.identifier.bibliographicCitationInternational Journal of Hydrogen Energy, v.48, no.26, pp.9713 - 9722-
dc.citation.titleInternational Journal of Hydrogen Energy-
dc.citation.volume48-
dc.citation.number26-
dc.citation.startPage9713-
dc.citation.endPage9722-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000949468100001-
dc.identifier.scopusid2-s2.0-85146961371-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusALL-SOLID-STATE-
dc.subject.keywordPlusZNO-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPHOTOCATALYSIS-
dc.subject.keywordPlusINHIBITION-
dc.subject.keywordPlusTIO2-
dc.subject.keywordAuthorZnO/ZnS/Rh-
dc.subject.keywordAuthorStability-
dc.subject.keywordAuthorPhotocorrosion-
dc.subject.keywordAuthorH-2 production-
dc.subject.keywordAuthorPhotocatalysis-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE