Full metadata record

DC Field Value Language
dc.contributor.authorKang, Sukhyun-
dc.contributor.authorLee, Kangpyo-
dc.contributor.authorRyu, Jeong Ho-
dc.contributor.authorAli, Ghulam-
dc.contributor.authorAkbar, Muhammad-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorChung, Chan-Yeup-
dc.contributor.authorHan, HyukSu-
dc.contributor.authorKim, Kang Min-
dc.date.accessioned2024-01-19T10:02:19Z-
dc.date.available2024-01-19T10:02:19Z-
dc.date.created2023-03-10-
dc.date.issued2023-03-
dc.identifier.issn2574-0970-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113955-
dc.description.abstractNumerous studies have attempted the oxygen evolution reaction (OER), a key half-reaction for water electrolysis, with low-cost catalysts exhibiting high activity and durability. This study reports a novel catalyst-design strategy for the heterogeneous growth of iron oxide (Fe2O3) nanoparticles on surface-functionalized multiwall carbon nanotubes (MWCNTs) through pulsed laser ablation (PLA). Strong physicochemical interactions at the functional Fe2O3 nanoparticles/conductive MWCNT support interface are confirmed by spectroscopic and computational investigations; the functional interface promotes charge transfer kinetics and reduces the energy barrier for the rate-determining step of OER. Furthermore, semi-circularly arranged Fe2O3 nanoparticles on the one-dimensional tubular MWCNT support, originating from heterogeneous nucleation and growth during the PLA process, facilitate mass and ion transfer during the OER. Thus, the optimized nanohybrid (0.5Fe@MWCNT) exhibits a low overpotential (310 mV) to generate a current density of 10 mA cm(-2) and possesses excellent durability, maintaining a stable current output during 10 h of continuous OER in a 1.0 M KOH electrolyte. Moreover, this synthetic strategy is economically advantageous, as it requires a total processing time of less than 1 h.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleTransition Metal Compounds on Functionalized Multiwall Carbon Nanotubes for the Efficient Oxygen Evolution Reaction-
dc.typeArticle-
dc.identifier.doi10.1021/acsanm.2c05458-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Nano Materials, v.6, no.6, pp.4319 - 4327-
dc.citation.titleACS Applied Nano Materials-
dc.citation.volume6-
dc.citation.number6-
dc.citation.startPage4319-
dc.citation.endPage4327-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000927498700001-
dc.identifier.scopusid2-s2.0-85147214537-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusPULSED-LASER ABLATION-
dc.subject.keywordPlusDOPED CARBON-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorelectrocatalyst-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthorpulse laser ablation-
dc.subject.keywordAuthornanohybrid-
dc.subject.keywordAuthormultiwall carbon nanotube-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE