Full metadata record

DC Field Value Language
dc.contributor.authorYoon, Hey Young-
dc.contributor.authorBak, Yecheol-
dc.contributor.authorPark, Seung Bin-
dc.contributor.authorCheekatla, Subba Rao-
dc.contributor.authorShin, Kyung Ho-
dc.contributor.authorKim, Sehoon-
dc.contributor.authorLee, Jun-Seok-
dc.date.accessioned2024-01-19T10:02:21Z-
dc.date.available2024-01-19T10:02:21Z-
dc.date.created2023-03-10-
dc.date.issued2023-03-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113956-
dc.description.abstractIn diabetes, platelets are activated by several stimuli, and the activated platelets generate reactive oxygen species (ROS) to induce the aggregation of platelets followed by thrombus formation resulting in various cardiovascular diseases. Therefore, detecting ROS perturbations in platelets can provide a clue to diagnosing diabetes. In this paper, iridium-based self-immolative probes (1a-1c) are reported to monitor perturbations of ROS in the blood through photoluminescence (PL) and electrochemiluminescence (ECL). The probes are designed based on an iridium complex conjugated with phenylboronic acid pinacol ester through carbamate moiety. Three probes contain distinct electron-withdrawing groups at the ortho-position in the benzyl linker; thus, subtle reactivity differences are expected against ROS. As expected, all three probes exhibit the most apparent PL changes against hydrogen peroxide (H2O2), but their response patterns against ROS are interestingly distinctive. Utilizing such differential ROS responsive pattern, a discrimination strategy is established using a combination of PL and ECL responses, and discrimination of platelets from diabetic and control rats is successfully demonstrated.-
dc.languageEnglish-
dc.publisherJohn Wiley and Sons Ltd-
dc.titleDual-Modal Iridium-Based Self-Immolative Chemosensors for Differential Responses against Reactive Oxygen Species and their Applications to Detect Diabetes-
dc.typeArticle-
dc.identifier.doi10.1002/admi.202202408-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials Interfaces, v.10, no.9-
dc.citation.titleAdvanced Materials Interfaces-
dc.citation.volume10-
dc.citation.number9-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000932757600001-
dc.identifier.scopusid2-s2.0-85148003718-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusEXTRACELLULAR HYDROGEN-PEROXIDE-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusHUMAN SERUM-
dc.subject.keywordPlusGLUCOSE-
dc.subject.keywordAuthorcross-reactive-
dc.subject.keywordAuthordiabetes-
dc.subject.keywordAuthoriridium-based chemosensor-
dc.subject.keywordAuthorreactive oxygen species-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE