Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dong Ho-
dc.contributor.authorOh, Sang-Ho-
dc.contributor.authorHa, Heon Phil-
dc.contributor.authorJoo, Young-Chang-
dc.contributor.authorKim, Jongsik-
dc.date.accessioned2024-01-19T10:02:38Z-
dc.date.available2024-01-19T10:02:38Z-
dc.date.created2023-02-10-
dc.date.issued2023-03-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113969-
dc.description.abstractCO generates CO2, a feedstock of chemicals including alcohols, alkenes, etc., through exothermic oxidation/ water-gas shift (WGS) on CuO-CeO2 interfaces. However, CO oxidation/WGS with wet, low-temperature gases have been partially explored with regard to surface dynamics, rate laws, rate-determining steps, and catalytic consequences. This study clarifies the aforementioned conundrums via control runs and kinetic assessments. Two CuO-CeO2 interfaces were engineered to possess comparable quantities of CO/H2O-accessible Cu+/2+ species or O2/H2O-accessible mobile (OM), labile (OL), and vacant oxygens, yet, provide distinct binding strengths with CO (ECO), OM (EOM), and H2O (EH2O) alongside with dissimilar H2O-accessible surface areas (SH2O). 18O2-labelling control runs and energy barriers (EBARRIER) of the CuO-CeO2 interfaces corroborated that OM migration outweighed OL migration as the rate-determining step for CO oxidation. The EBARRIER/SH2O values of the CuO-CeO2 interfaces demonstrated that H2O scission overrode CO2 evolution as the rate-determining step for the WGS. CO oxidation competed with yet outperformed WGS in converting CO using wet, low-temperature gases, highlighting the importance of lowering the ECO/EOM values in boost OM migration on CuO-CeO2 interfaces and reducing their EH2O values for hindering WGS. These findings can promote the low-temperature CO transformation performance maximum-obtainable on CuO-CeO2 interfaces.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleUnravelling rate-determining step and consequence of O2-or H2O-assisted, wet CO transformation on catalytic CuO-CeO2 domains via interfacial engineering-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2022.156099-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.614-
dc.citation.titleApplied Surface Science-
dc.citation.volume614-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000912105800001-
dc.identifier.scopusid2-s2.0-85144600195-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusGAS SHIFT REACTION-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORK-
dc.subject.keywordPlusHIGH CO2-OVER-N-2 SELECTIVITY-
dc.subject.keywordPlusPREFERENTIAL OXIDATION-
dc.subject.keywordPlusLOW-TEMPERATURE-
dc.subject.keywordPlusCOPPER-OXIDE-
dc.subject.keywordPlusCUO/CEO2 CATALYSTS-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusFLUE-GAS-
dc.subject.keywordPlusH-2-RICH STREAMS-
dc.subject.keywordAuthorCO oxidation-
dc.subject.keywordAuthorInterfacial engineering-
dc.subject.keywordAuthorRate-determining step-
dc.subject.keywordAuthorWet-
dc.subject.keywordAuthorlow-temperature gas-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE