Full metadata record

DC Field Value Language
dc.contributor.authorMalik, Yoga Trianzar-
dc.contributor.authorShin, Seo-Yeon-
dc.contributor.authorJang, Jin Il-
dc.contributor.authorKim, Hyung Min-
dc.contributor.authorCho, Sangho-
dc.contributor.authorDo, Young Rag-
dc.contributor.authorJeon, Ju-Won-
dc.date.accessioned2024-01-19T10:03:04Z-
dc.date.available2024-01-19T10:03:04Z-
dc.date.created2023-01-03-
dc.date.issued2023-03-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113986-
dc.description.abstractDespite of extremely high theoretical capacity of Si (3579 mAh g(-1)), Si anodes suffer from pulverization and delamination of the electrodes induced by large volume change during charge/discharge cycles. To address those issues, herein, self-healable and highly stretchable multifunctional binders, polydioxythiophene:polyacrylic acid:phytic acid (PEDOT:PAA: PA, PDPP) that provide Si anodes with self-healability and excellent structural integrity is designed. By utilizing the self-healing binder, Si anodes self-repair cracks and damages of Si anodes generated during cycling. For the first time, it is demonstrated that Si anodes autonomously self-heal artificially created cracks in electrolytes under practical battery operating conditions. Consequently, this self-healable Si anode can still deliver a reversible capacity of 2312 mAh g(-1) after 100 cycles with remarkable initial Coulombic efficiency of 94%, which is superior to other reported Si anodes. Moreover, the self-healing binder possesses enhanced Li-ion diffusivity with additional electronic conductivity, providing excellent rate capability with a capacity of 2084 mAh g(-1) at a very high C-rate of 5 C.-
dc.languageEnglish-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleSelf-Repairable Silicon Anodes Using a Multifunctional Binder for High-Performance Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202206141-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall, v.19, no.9-
dc.citation.titleSmall-
dc.citation.volume19-
dc.citation.number9-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000899259600001-
dc.identifier.scopusid2-s2.0-85144402055-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusRECENT PROGRESS-
dc.subject.keywordPlusNANO-
dc.subject.keywordPlusGEL-
dc.subject.keywordAuthorlithium-ion batteries-
dc.subject.keywordAuthorrate capability-
dc.subject.keywordAuthorself-healable silicon anodes-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE