Full metadata record

DC Field Value Language
dc.contributor.authorChoong, Choe Earn-
dc.contributor.authorYoon, So Yeon-
dc.contributor.authorWong, Kien Tiek-
dc.contributor.authorKim, Minhee-
dc.contributor.authorLee, Gooyong-
dc.contributor.authorKim, Sang-Hyoun-
dc.contributor.authorJeon, Byong-Hun-
dc.contributor.authorChoi, Jaeyoung-
dc.contributor.authorYoon, Yeomin-
dc.contributor.authorHa Choi, Eun-
dc.contributor.authorJang, Min-
dc.date.accessioned2024-01-19T10:03:24Z-
dc.date.available2024-01-19T10:03:24Z-
dc.date.created2023-06-01-
dc.date.issued2023-02-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113995-
dc.description.abstractWe prepared hydrophobic sulfur (S) core-shell-layered nano-zero-valent iron (Fe) (S-nZVI) via a post-sulfidation method with varying Fe/S mass ratios for NO3- reduction. Notably, S(0.125)ZVI (Fe/S = 0.125) showed good N-O cleavage properties owing to its high electron (e(-)) transfer efficiency and low surface passivation. As a result, the S(0.125)ZVI exhibited higher selectivity of NO3- reduction toward N-2 than sole nZVI in synthetic and actual NO3- groundwater in batch experiments. Density functional theory (DFT) calculations showed that H-2 evolution over S-nZVI was suppressed by the S atom in the hollow site of the Fe(1 1 0) surface, resulting in nearly 100 % denitrification selectivity. Quenching tests revealed that e(-) transfer through the S atom toward the surface bounded by NOx species is the dominant denitrification mechanism of S-nZVI. Up-flow column tests using actual groundwater were conducted for 127 d, and S(0.125)ZVI demonstrated a removal capacity of up to 1907 mg-N/g NO3-. Field experiments using S0.125ZVI for NO3- -contaminated groundwater remediation were conducted over four months, confirming that S-nZVI may be an alternative to nZVI for in situ groundwater remediation.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHydrophobic sulfur core-shell layered metallic iron for nitrate reduction with nearly 100% dinitrogen selectivity: Mechanism and field studies-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2022.140083-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.454-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume454-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000990152600001-
dc.identifier.scopusid2-s2.0-85141530135-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusZERO-VALENT IRON-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusNANO-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusNZVI-
dc.subject.keywordPlusPH-
dc.subject.keywordAuthorZero-valent iron-
dc.subject.keywordAuthorSulfur-
dc.subject.keywordAuthorNitrate reduction-
dc.subject.keywordAuthorField test-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE