Full metadata record

DC Field Value Language
dc.contributor.authorPark, Eun-Sang-
dc.contributor.authorLee, Dong-Kyu-
dc.contributor.authorXue, Fei-
dc.contributor.authorMin, Byoung-Chul-
dc.contributor.authorKoo, Hyun Cheol-
dc.contributor.authorHaney, Paul M.-
dc.contributor.authorKim, Kyoung-Whan-
dc.contributor.authorLee, Kyung-Jin-
dc.date.accessioned2024-01-19T10:03:44Z-
dc.date.available2024-01-19T10:03:44Z-
dc.date.created2023-03-16-
dc.date.issued2023-02-
dc.identifier.issn2469-9950-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114013-
dc.description.abstractThe symmetry of normal metal/ferromagnet bilayers allows spin-orbit torques (SOTs) to simultaneously have two distinct angular dependences on the magnetization direction <SIC>m. The most well-studied forms of SOT consist of the conventional fieldlike and dampinglike torques, which we label as "lowest-order" SOT. There are additional SOT forms associated with spin polarization different from that of the lowest-order SOT, and which contain an extra factor of m<SIC> dependence. We label these as "higher-order" SOT. Understanding SOT-driven magnetization dynamics requires detailed information about the full angular dependence. In this paper, we measure both the lowest-order and higher-order angular dependences of SOTs in three types of bilayers, Pt/Co, Ta/CoFeB, and W/CoFeB, using harmonic Hall measurements. It is found that the higher-order SOT is negligible for Pt/Co and Ta/CoFeB, whereas it is dominant over the lowest-order one for W/CoFeB. Macrospin simulations show that the higher-order SOT can significantly affect the magnetization dynamics, which is qualitatively in line with SOT-induced switching experiments.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.titleStrong higher-order angular dependence of spin-orbit torque in W/CoFeB bilayer-
dc.typeArticle-
dc.identifier.doi10.1103/PhysRevB.107.064411-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPhysical Review B, v.107, no.6-
dc.citation.titlePhysical Review B-
dc.citation.volume107-
dc.citation.number6-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000931987700003-
dc.identifier.scopusid2-s2.0-85148420461-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCURRENT-DRIVEN DYNAMICS-
dc.subject.keywordPlusPERPENDICULAR MAGNETIZATION-
dc.subject.keywordPlusLOW-POWER-
dc.subject.keywordPlusSYMMETRY-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE