Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Dong-Hee-
dc.contributor.authorLiu, Hui-Wen-
dc.contributor.authorJung, Yong Hun-
dc.contributor.authorAhn, Jinchul-
dc.contributor.authorKim, Jin-A-
dc.contributor.authorOh, Dongwoo-
dc.contributor.authorJeong, Yeju-
dc.contributor.authorKim, Minseop-
dc.contributor.authorYoon, Hongjin-
dc.contributor.authorKang, Byengkyu-
dc.contributor.authorHong, Eunsol-
dc.contributor.authorSong, Euijeong-
dc.contributor.authorChung, Seok-
dc.date.accessioned2024-01-19T10:04:22Z-
dc.date.available2024-01-19T10:04:22Z-
dc.date.created2023-02-17-
dc.date.issued2023-02-
dc.identifier.issn1473-0197-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114046-
dc.description.abstractAngiogenesis, the formation of new blood vessels from existing vessels, has been associated with more than 70 diseases. Although numerous studies have established angiogenesis models, only a few indicators can be used to analyze angiogenic structures. In the present study, we developed an image-processing pipeline based on deep learning to analyze and quantify angiogenesis. We utilized several image-processing algorithms to quantify angiogenesis, including a deep learning-based cell nuclear segmentation algorithm and image skeletonization. This method could quantify and measure changes in blood vessels in response to biochemical gradients using 16 indicators, including length, width, number, and nuclear distribution. Moreover, this procedure is highly efficient for the three-dimensional quantitative analysis of angiogenesis and can be applied to diverse angiogenesis investigations.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleAnalyzing angiogenesis on a chip using deep learning-based image processing-
dc.typeArticle-
dc.identifier.doi10.1039/d2lc00983h-
dc.description.journalClass1-
dc.identifier.bibliographicCitationLab on a Chip, v.23, no.3, pp.475 - 484-
dc.citation.titleLab on a Chip-
dc.citation.volume23-
dc.citation.number3-
dc.citation.startPage475-
dc.citation.endPage484-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000919323000001-
dc.identifier.scopusid2-s2.0-85147171147-
dc.relation.journalWebOfScienceCategoryBiochemical Research Methods-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusCELL-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusDISEASE-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE