Full metadata record

DC Field Value Language
dc.contributor.authorGong, Sang Hyuk-
dc.contributor.authorLim, Hyo Jin-
dc.contributor.authorLee, Ji Hyeon-
dc.contributor.authorYoo, Yiseul-
dc.contributor.authorYu, Seungho-
dc.contributor.authorLim, Hee-Dae-
dc.contributor.authorJung, Hyun Wook-
dc.contributor.authorKo, Jesse S.-
dc.contributor.authorKim, In Soo-
dc.contributor.authorKim, Hyung-Seok-
dc.date.accessioned2024-01-19T10:04:53Z-
dc.date.available2024-01-19T10:04:53Z-
dc.date.created2023-01-03-
dc.date.issued2023-02-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114067-
dc.description.abstractAqueous electrochemical energy storage systems that rely on earth-abundant elements are considered as cost-effective alternatives to current lithium-ion batteries which have dominated the technological landscape. For zinc-based energy storage, dendrite growth is an underlying challenge that needs to be addressed to enact high performance and long-term stability. In the present study, we employ atomic layer deposition to produce a thin tin oxide layer that allows dendrite-free cycling for aqueous zinc-ion batteries. Tin oxide is particularly inter-esting as it provides two distinct advantages-dendrite-free cycling and mitigation of parasitic hydrogen gas evolution. The presence of the tin oxide layer leads to hydrogen gas suppression and homogeneous zinc plating/ stripping, both of which are essential to improve the performance of zinc-ion batteries. When paired in a full-cell configuration with manganese oxide, this anode delivers a high specific capacity of 273 mAh g-1 at an imposed current rate of 100 mA g-1. Through density functional theory calculations, we elucidate further that the adsorption energy of Zn for bare Zn is higher than that in the presence of a tin oxide layer.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleElectrochemical assessment of highly reversible SnO2-coated Zn metal anodes prepared via atomic layer deposition for aqueous Zn-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2022.155633-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.611-
dc.citation.titleApplied Surface Science-
dc.citation.volume611-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000892938600001-
dc.identifier.scopusid2-s2.0-85142128864-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusZINC-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCORROSION-
dc.subject.keywordAuthorAqueous zinc -ion battery-
dc.subject.keywordAuthorZinc metal anode-
dc.subject.keywordAuthorAtomic layer deposition-
dc.subject.keywordAuthorTin oxide-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE