Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Changhoon-
dc.contributor.authorPark, Jung Been-
dc.contributor.authorPark, Jong Hyun-
dc.contributor.authorYu, Seungho-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2024-01-19T10:30:27Z-
dc.date.available2024-01-19T10:30:27Z-
dc.date.created2023-03-02-
dc.date.issued2023-01-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114117-
dc.description.abstractAqueous Zn metal batteries (AZMBs) are promising candidates for large-scale energy storage systems, but metallic Zn anodes persistently suffer from severe dendrite proliferation, causing a steep decline in battery lifetime and limiting practical applications. In this study, an ultrathin, sturdy artificial solid electrolyte inter -phase (ASEI), mainly composed of interconnected ZnO nanoparticles (ZnO-rich ASEI), is fabricated on the Zn surface by a novel in-situ ZnO nucleation and growth strategy to alleviate this dendrite problem. The uniformly and densely coated ZnO-rich ASEI enabled simultaneous manipulation of electron/Zn2+ flux and the desolvation effect on the Zn surface, which minimized the occurrence of dendrites and side-reactions and improved Zn deposition kinetics. The ZnO-rich ASEI effectively guided preferential Zn growth along the Zn(002) plane with thorough 2D atom diffusion confinement for even Zn plating. Consequently, despite the thin thickness of ZnO-rich ASEI, the symmetric cell achieved an outstanding cyclability (over 550 h) even under harsher condition (20 mA cm-2, 10 mAh cm-2) than a realistic condition (5 mAh cm-2) of practical AZMBs. Moreover, the voltage hysteresis reduction effect stemming from ZnO-rich ASEI is excellent compared to state-of-the-art research related to ASEI@Zn. The superiority of ZnO-rich ASEI@Zn was also verified in a Zn/MnO2 full-cell test, exhibiting superb long-term cyclability. This study provides a new direction for future research on stable Zn anodes using ASEI fabrication.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleSimultaneous manipulation of electron/Zn2+ion flux and desolvation effect enabled by in-situ built ultra-thin oxide-based artificial interphase for controlled deposition of zinc metal anodes-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2022.141015-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.456-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume456-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000927019400001-
dc.identifier.scopusid2-s2.0-85144560572-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusDENDRITE-FREE-
dc.subject.keywordPlusZN ANODE-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusPROGRESS-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordAuthorAqueous zinc -ion battery-
dc.subject.keywordAuthorZinc dendrite-
dc.subject.keywordAuthorZinc -metal anode-
dc.subject.keywordAuthorArtificial interphase-
dc.subject.keywordAuthorInterface coating-
dc.subject.keywordAuthorNucleation-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE