Full metadata record

DC Field Value Language
dc.contributor.authorKim, Eunchan-
dc.contributor.authorKim, Seonghoon-
dc.contributor.authorChoi, Myunghwan-
dc.contributor.authorSeo, Taewon-
dc.contributor.authorYang, Sungwook-
dc.date.accessioned2024-01-19T10:31:07Z-
dc.date.available2024-01-19T10:31:07Z-
dc.date.created2023-01-26-
dc.date.issued2023-01-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114150-
dc.description.abstractWe present a new deep learning framework for removing honeycomb artifacts yielded by optical path blocking of cladding layers in fiber bundle imaging. The proposed framework, HAR-CNN, provides an end-to-end mapping from a raw fiber bundle image to an artifact-free image via a convolution neural network (CNN). The synthesis of honeycomb patterns on ordinary images allows conveniently learning and validating the network without the enormous ground truth collection by extra hardware setups. As a result, HAR-CNN shows significant performance improvement in honeycomb pattern removal and also detailed preservation for the 1961 USAF chart sample, compared with other conventional methods. Finally, HAR-CNN is GPU-accelerated for real-time processing and enhanced image mosaicking performance.-
dc.languageEnglish-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titleHoneycomb Artifact Removal Using Convolutional Neural Network for Fiber Bundle Imaging-
dc.typeArticle-
dc.identifier.doi10.3390/s23010333-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSensors, v.23, no.1-
dc.citation.titleSensors-
dc.citation.volume23-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000909721600001-
dc.identifier.scopusid2-s2.0-85145966296-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusIMAGES-
dc.subject.keywordAuthorfiber bundle imaging-
dc.subject.keywordAuthorhoneycomb artifact-
dc.subject.keywordAuthorpattern synthesis-
dc.subject.keywordAuthorconvolution neural network (CNN)-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE