Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Eunchan | - |
dc.contributor.author | Kim, Seonghoon | - |
dc.contributor.author | Choi, Myunghwan | - |
dc.contributor.author | Seo, Taewon | - |
dc.contributor.author | Yang, Sungwook | - |
dc.date.accessioned | 2024-01-19T10:31:07Z | - |
dc.date.available | 2024-01-19T10:31:07Z | - |
dc.date.created | 2023-01-26 | - |
dc.date.issued | 2023-01 | - |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/114150 | - |
dc.description.abstract | We present a new deep learning framework for removing honeycomb artifacts yielded by optical path blocking of cladding layers in fiber bundle imaging. The proposed framework, HAR-CNN, provides an end-to-end mapping from a raw fiber bundle image to an artifact-free image via a convolution neural network (CNN). The synthesis of honeycomb patterns on ordinary images allows conveniently learning and validating the network without the enormous ground truth collection by extra hardware setups. As a result, HAR-CNN shows significant performance improvement in honeycomb pattern removal and also detailed preservation for the 1961 USAF chart sample, compared with other conventional methods. Finally, HAR-CNN is GPU-accelerated for real-time processing and enhanced image mosaicking performance. | - |
dc.language | English | - |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | - |
dc.title | Honeycomb Artifact Removal Using Convolutional Neural Network for Fiber Bundle Imaging | - |
dc.type | Article | - |
dc.identifier.doi | 10.3390/s23010333 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Sensors, v.23, no.1 | - |
dc.citation.title | Sensors | - |
dc.citation.volume | 23 | - |
dc.citation.number | 1 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000909721600001 | - |
dc.identifier.scopusid | 2-s2.0-85145966296 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Analytical | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Instruments & Instrumentation | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Instruments & Instrumentation | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | ENHANCEMENT | - |
dc.subject.keywordPlus | IMAGES | - |
dc.subject.keywordAuthor | fiber bundle imaging | - |
dc.subject.keywordAuthor | honeycomb artifact | - |
dc.subject.keywordAuthor | pattern synthesis | - |
dc.subject.keywordAuthor | convolution neural network (CNN) | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.