Full metadata record

DC Field Value Language
dc.contributor.authorTran, Minh Xuan-
dc.contributor.authorNguyen, Thuy-An-
dc.contributor.authorLee, Joong Kee-
dc.contributor.authorLee, Sang-Wha-
dc.date.accessioned2024-01-19T10:31:21Z-
dc.date.available2024-01-19T10:31:21Z-
dc.date.created2023-01-03-
dc.date.issued2023-01-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114160-
dc.description.abstractSilicon-based anode materials have critical issues such as drastic volume changes, huge stress generation, and the thickening of solid-electrolyte interphase layer. Thus, a new strategy for improving silicon interface is necessary for significantly enhanced Li+ ion transportation and structural stability during prolonged cycling, while simultaneously reducing severe side reactions. Herein, we prepared porous silicon particles covalently linked with styrene-based polymers (polystyrene (PS) and poly(4-chlorostyrene) (PCS)) via a facile non-atmospheric thermolytic process at a low-temperature (<= 400 degrees C), in which the decomposed styrenic carbon fragments are covalently grafted on the silicon surface via Si-O-C and Si-C species. Notably, PCS-grafted porous silicon exhibited the significantly enhanced electrochemical performance (i.e., a high rate capability of 1270 mAh g-1 at 20 A g-1, 90.7% of initial capacity at 4 A g-1, and a reversible capacity of 1725 mAh g-1 after 200 cycles), because of the dual covalent linkages of Si-C and Si-O-C species in chloro-styrenic carbons that provide durable lithium storage capability and fast Li+ transportation. Specifically, the Si-C linkage enforced the formation of a durable interlayer that protects the Si active material from reactive electrolytes, and the polarized Si-O-C linkage facilitates the rapid transport of Li+ ions.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titlePorous silicon covalently-grafted with chloro-styrenic carbons for fast Li+ diffusion and durable lithium-storage capability-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2022.232326-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Power Sources, v.554-
dc.citation.titleJournal of Power Sources-
dc.citation.volume554-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000891787000001-
dc.identifier.scopusid2-s2.0-85141478785-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSIC THIN-FILMS-
dc.subject.keywordPlusTHERMAL-DEGRADATION-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordAuthorPoly(4-chlorostyrene)-
dc.subject.keywordAuthorThermolytic grafting-
dc.subject.keywordAuthorCovalent linkage-
dc.subject.keywordAuthorPorous silicon-
dc.subject.keywordAuthorLithium-ion battery-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE