Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jeong, Sooyeon | - |
dc.contributor.author | Yang, Sunhye | - |
dc.contributor.author | Kim, Byeong Guk | - |
dc.contributor.author | Lee, Hye Jung | - |
dc.contributor.author | Bae, Jung Jun | - |
dc.contributor.author | Kim, Jung Hun | - |
dc.contributor.author | Kim, Jung Mo | - |
dc.contributor.author | Lee, Wonki | - |
dc.contributor.author | Hwang, Jun Yeon | - |
dc.contributor.author | Choi, Soyeon | - |
dc.contributor.author | Jeong, Hee Jin | - |
dc.contributor.author | Park, Jong Hwan | - |
dc.contributor.author | Choi, Young Chul | - |
dc.contributor.author | Lee, Geon-Woong | - |
dc.contributor.author | Jeong, Seung Yol | - |
dc.date.accessioned | 2024-01-19T10:31:31Z | - |
dc.date.available | 2024-01-19T10:31:31Z | - |
dc.date.created | 2022-12-22 | - |
dc.date.issued | 2023-01 | - |
dc.identifier.issn | 0008-6223 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/114169 | - |
dc.description.abstract | Herein, we present a potential approach for the qualitative production of quasi-defect-free reduced graphene oxide (QrGO) with semimetallic transport behavior. In rGO, the formation of defects is highly dependent on the oxidation process of graphite. Subsequent exfoliation of graphite oxide, the quasi-defect-free graphene oxide (QGO) shows abundant epoxy and hydroxyl groups which confirmed the suppressed structural deformation. Typical rGO and QrGO are compared to characterize the remarkable electrical, optical, and thermal properties of QrGO. In particular, under low temperature, the unusual carrier transport phenomena of QrGO exhibits a metallike behavior, unlike typical rGO, which shows an insulator-to-semimetal transition with variable-range hopping conduction behavior. This conduction mechanism, resembling that of mechanically exfoliated graphene, facilitates the fabrication of a QrGO-based conducting film with a high electrical conductivity of similar to 1000 S/cm. Moreover, during a 200-h test with temperature and moisture conditions of 85 degrees C and 85%, respectively, QrGO shows environmental stability with minimal fluctuations in resistance. Furthermore, a conducting paste was fabricated from QrGO in an aqueous solution, showing a highly concentrated solid content and excellent electrical conductivity. It shows great potential for the large-scale production of high-quality chemically exfoliated graphene for practical applications. | - |
dc.language | English | - |
dc.publisher | Pergamon Press Ltd. | - |
dc.title | Highly conductive quasi-defect-free reduced graphene oxide for qualitative scalable production | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.carbon.2022.11.041 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Carbon, v.203, pp.221 - 229 | - |
dc.citation.title | Carbon | - |
dc.citation.volume | 203 | - |
dc.citation.startPage | 221 | - |
dc.citation.endPage | 229 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000892299100004 | - |
dc.identifier.scopusid | 2-s2.0-85143120985 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | FEW-LAYER GRAPHENE | - |
dc.subject.keywordPlus | RAMAN-SPECTROSCOPY | - |
dc.subject.keywordPlus | GRAPHITE | - |
dc.subject.keywordPlus | EXFOLIATION | - |
dc.subject.keywordPlus | SCATTERING | - |
dc.subject.keywordPlus | NANOSHEETS | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | TRANSPORT | - |
dc.subject.keywordAuthor | Reduced graphene oxide | - |
dc.subject.keywordAuthor | Quasi-defect-free | - |
dc.subject.keywordAuthor | Semimetallic conduction | - |
dc.subject.keywordAuthor | Conductive paste | - |
dc.subject.keywordAuthor | Scalable production | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.