Full metadata record

DC Field Value Language
dc.contributor.authorLee, Dong-Gyu-
dc.contributor.authorShin, Joonchul-
dc.contributor.authorKim, Hyun Soo-
dc.contributor.authorHur, Sunghoon-
dc.contributor.authorSun, Shuailing-
dc.contributor.authorJang, Ji-Soo-
dc.contributor.authorChang, Sangmi-
dc.contributor.authorJung, Inki-
dc.contributor.authorNahm, Sahn-
dc.contributor.authorKang, Heemin-
dc.contributor.authorKang, Chong-Yun-
dc.contributor.authorKim, Sangtae-
dc.contributor.authorBaik, Jeong Min-
dc.contributor.authorYoo, Il-Ryeol-
dc.contributor.authorCho, Kyung-Hoon-
dc.contributor.authorSong, Hyun-Cheol-
dc.date.accessioned2024-01-19T10:31:34Z-
dc.date.available2024-01-19T10:31:34Z-
dc.date.created2022-12-15-
dc.date.issued2023-01-
dc.identifier.issn2198-3844-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114171-
dc.description.abstractAn innovative autonomous resonance-tuning (ART) energy harvester is reported that utilizes adaptive clamping systems driven by intrinsic mechanical mechanisms without outsourcing additional energy. The adaptive clamping system modulates the natural frequency of the harvester&apos;s main beam (MB) by adjusting the clamping position of the MB. The pulling force induced by the resonance vibration of the tuning beam (TB) provides the driving force for operating the adaptive clamp. The ART mechanism is possible by matching the natural frequencies of the TB and clamped MB. Detailed evaluations are conducted on the optimization of the adaptive clamp tolerance and TB design to increase the pulling force. The energy harvester exhibits an ultrawide resonance bandwidth of over 30 Hz in the commonly accessible low vibration frequency range (<100 Hz) owing to the ART function. The practical feasibility is demonstrated by evaluating the ART performance under both frequency and acceleration-variant conditions and powering a location tracking sensor.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleAutonomous Resonance-Tuning Mechanism for Environmental Adaptive Energy Harvesting-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202205179-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science, v.10, no.3-
dc.citation.titleAdvanced Science-
dc.citation.volume10-
dc.citation.number3-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000891163500001-
dc.identifier.scopusid2-s2.0-85142893081-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusVIBRATION-
dc.subject.keywordPlusINTERNET-
dc.subject.keywordAuthoradaptive clamps-
dc.subject.keywordAuthorautonomous resonance-tuning-
dc.subject.keywordAuthorenergy harvesting-
dc.subject.keywordAuthorpiezoelectric-
dc.subject.keywordAuthortuning beam-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE