Full metadata record

DC Field Value Language
dc.contributor.authorVoronina, Natalia-
dc.contributor.authorYu, Jun Ho-
dc.contributor.authorKim, Hee Jae-
dc.contributor.authorYaqoob, Najma-
dc.contributor.authorGuillon, Olivier-
dc.contributor.authorKim, Hyungsub-
dc.contributor.authorJung, Min-Gi-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorYazawa, Koji-
dc.contributor.authorYashiro, Hitoshi-
dc.contributor.authorKaghazchi, Payam-
dc.contributor.authorMyung, Seung-Taek-
dc.date.accessioned2024-01-19T10:31:36Z-
dc.date.available2024-01-19T10:31:36Z-
dc.date.created2022-12-15-
dc.date.issued2023-01-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114173-
dc.description.abstractOxygen-redox-based-layered cathode materials are of great importance in realizing high-energy-density sodium-ion batteries (SIBs) that can satisfy the demands of next-generation energy storage technologies. However, Mn-based-layered materials (P2-type Na-poor Na-y[A(x)Mn(1-x)]O-2, where A = alkali ions) still suffer from poor reversibility during oxygen-redox reactions and low conductivity. In this work, the dual Li and Co replacement is investigated in P2-type-layered NaxMnO2. Experimentally and theoretically, it is demonstrated that the efficacy of the dual Li and Co replacement in Na-0.6[Li0.15Co0.15Mn0.7]O-2 is that it improves the structural and cycling stability despite the reversible Li migration from the transition metal layer during de-/sodiation. Operando X-ray diffraction and ex situ neutron diffraction analysis prove that the material maintains a P2-type structure during the entire range of Na+ extraction and insertion with a small volume change of approximate to 4.3%. In Na-0.6[Li0.15Co0.15Mn0.7]O-2, the reversible electrochemical activity of Co3+/Co4+, Mn3+/Mn4+, and O2-/(O-2)(n-) redox is identified as a reliable mechanism for the remarkable stable electrochemical performance. From a broader perspective, this work highlights a possible design roadmap for developing cathode materials with optimized cationic and anionic activities and excellent structural stabilities for SIBs.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleEngineering Transition Metal Layers for Long Lasting Anionic Redox in Layered Sodium Manganese Oxide-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202210423-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.33, no.5-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume33-
dc.citation.number5-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000891663700001-
dc.identifier.scopusid2-s2.0-85142889897-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN-REDOX-
dc.subject.keywordPlusVOLTAGE HYSTERESIS-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordPlusP2-TYPE-
dc.subject.keywordPlusPHASE-
dc.subject.keywordAuthoranionic-
dc.subject.keywordAuthorbatteries-
dc.subject.keywordAuthorcationic-
dc.subject.keywordAuthorredox-
dc.subject.keywordAuthorsodium-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE