Full metadata record

DC Field Value Language
dc.contributor.authorLangie, Kezia Megagita Gerby-
dc.contributor.authorTak, Kyungjae-
dc.contributor.authorKim, Changsoo-
dc.contributor.authorLee, Hee Won-
dc.contributor.authorPark, Kwangho-
dc.contributor.authorKim, Dongjin-
dc.contributor.authorJung, Wonsang-
dc.contributor.authorLee, Chan Woo-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorLee, Dong Ki-
dc.contributor.authorKoh, Jai Hyun-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorWon, Da Hye-
dc.contributor.authorLee, Ung-
dc.date.accessioned2024-01-19T10:32:10Z-
dc.date.available2024-01-19T10:32:10Z-
dc.date.created2023-04-20-
dc.date.issued2022-12-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114198-
dc.description.abstractCarbon capture and utilization technology has been studied for its practical ability to reduce CO2 emissions and enable economical chemical production. The main challenge of this technology is that a large amount of thermal energy must be provided to supply high-purity CO2 and purify the product. Herein, we propose a new concept called reaction swing absorption, which produces synthesis gas (syngas) with net-zero CO2 emission through direct electrochemical CO2 reduction in a newly proposed amine solution, triethylamine. Experimental investigations show high CO2 absorption rates (>84%) of triethylamine from low CO2 concentrated flue gas. In addition, the CO Faradaic efficiency in a triethylamine supplied membrane electrode assembly electrolyzer is approximately 30% (@-200 mA cm(-2)), twice higher than those in conventional alkanolamine solvents. Based on the experimental results and rigorous process modeling, we reveal that reaction swing absorption produces high pressure syngas at a reasonable cost with negligible CO2 emissions. This system provides a fundamental solution for the CO2 crossover and low system stability of electrochemical CO2 reduction. Carbon capture, utilization and storage technology is limited by the need for a separate CO2 capture step. Here, the authors propose a strategy and economic analysis for simultaneous dilute CO2 capture from flue gas and direct electrochemical reduction to synthesis gas via reaction swing absorption.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleToward economical application of carbon capture and utilization technology with near-zero carbon emission-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-022-35239-9-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.13, no.1-
dc.citation.titleNature Communications-
dc.citation.volume13-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000952021200001-
dc.identifier.scopusid2-s2.0-85143370630-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL REDUCTION-
dc.subject.keywordPlusELECTROCATALYTIC REDUCTION-
dc.subject.keywordPlusCO2-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusBICARBONATE-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE