Full metadata record

DC Field Value Language
dc.contributor.authorLim, Gukhyun-
dc.contributor.authorShin, Dongki-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorCho, Min Kyung-
dc.contributor.authorKim, Chan-
dc.contributor.authorSohn, Seok Su-
dc.contributor.authorLee, Minah-
dc.contributor.authorHong, Jihyun-
dc.date.accessioned2024-01-19T10:33:30Z-
dc.date.available2024-01-19T10:33:30Z-
dc.date.created2022-10-20-
dc.date.issued2022-12-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114258-
dc.description.abstractThe exploding electric-vehicle market requires cost-effective high-energy materials for rechargeable lithium batteries. The manganese-rich spinel oxide LiNi0.5Mn1.5O4 (LNMO) can store a capacity greater than 200 mAh g(-1) based on the multi-cation (Ni2+/Ni4+ and Mn3+/Mn4+) redox centers. However, its practical capacity is limited to Ni2+/Ni4+ redox (135 mAh g(-1)) due to the poor reversibility of Mn3+/Mn4+ redox. This instability is generally attributed to the Jahn-Teller distortion of Mn3+ and its disproportionation, which leads to severe Mn dissolution. Herein, for the first time, the excellent reversibility of Mn3+/Mn4+ redox within 2.3-4.3 V is demonstrated, requiring revisiting the previous theory. LNMO loses capacity only within a wide voltage range of 2.3-4.9 V. It is revealed that a dynamic evolution of the electrochemical interface, for example, potential-driven rocksalt phase formation and decomposition, repeatedly occurs during cycling. The interfacial evolution induces electrolyte degradation and surface passivation, impeding the charge-transfer reactions. It is further demonstrated that stabilizing the interface by electrolyte modification extends the cycle life of LNMO while using the multi-cation redox, enabling 71.5% capacity retention of LNMO after 500 cycles. The unveiled dynamic oxide interface will propose a new guideline for developing Mn-rich cathodes by realizing the reversible Mn redox.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleRegulating Dynamic Electrochemical Interface of LiNi0.5Mn1.5O4 Spinel Cathode for Realizing Simultaneous Mn and Ni Redox in Rechargeable Lithium Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202202049-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.12, no.46-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume12-
dc.citation.number46-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000863025900001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-VOLTAGE SPINEL-
dc.subject.keywordPlusLIMN1.5NI0.5O4 SPINEL-
dc.subject.keywordPlusCYCLING STABILITY-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusRICH-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorEC-free electrolytes-
dc.subject.keywordAuthorMn-rich cathodes-
dc.subject.keywordAuthormulti-cation redox-
dc.subject.keywordAuthorrechargeable Li batteries-
dc.subject.keywordAuthorspinel oxides-
dc.subject.keywordAuthorsurface reconstruction-
dc.subject.keywordAuthorcathode-electrolyte interfaces-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE