Full metadata record

DC Field Value Language
dc.contributor.authorIm, Min Ji-
dc.contributor.authorHyeong, Seok-Ki-
dc.contributor.authorLee, Jae-Hyun-
dc.contributor.authorKim, Tae-Wook-
dc.contributor.authorLee, Seoung-Ki-
dc.contributor.authorJung, Gun Young-
dc.contributor.authorBae, Sukang-
dc.date.accessioned2024-01-19T10:33:31Z-
dc.date.available2024-01-19T10:33:31Z-
dc.date.created2022-10-20-
dc.date.issued2022-12-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114259-
dc.description.abstractChemical doping is an efficient method to tailor the electrical properties of graphene transparent conductive electrodes. In general, chemically doped graphene by single-side exhibits a drawback of high conductivity but inferior uniformity and stability after exposure to chemical solvent or annealing process. Here, we report a highly uniform and stable graphene transparent conducting electrodes doped by dual-side with macro-and small molecular organic dopants such as Nafion on the top and benzimidazole (BI) at the bottom. The electrical properties, optical properties, and stability were compared depending on the top-side dopants. Dual-side doping showed a higher work function (> 5 eV), and a uniform low sheet resistance (less than 200 omega sq??? 1) compared to the single-side doping. The Dual-N exhibited a relatively higher figure of merit (FoM, sigma DC/sigma op -62.38), a smoother surface (Rrms -0.54 nm), and a superior thermal/chemical stability than the Dual-A, showing the potential possibility as alternative electrodes for next-generation flexible electronic devices. <comment>Superscript/Subscript Available</comment-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHigh uniformity and stability of graphene transparent conducting electrodes by dual-side doping-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2022.154569-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.605-
dc.citation.titleApplied Surface Science-
dc.citation.volume605-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000859689200001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusWAFER-SCALE-
dc.subject.keywordPlusMONOLAYER GRAPHENE-
dc.subject.keywordPlusLAYER GRAPHENE-
dc.subject.keywordPlusWORK-FUNCTION-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorDual-side doping-
dc.subject.keywordAuthorp-doping-
dc.subject.keywordAuthorNafion-
dc.subject.keywordAuthorFigure of Merit-
dc.subject.keywordAuthorSheet resistance-
dc.subject.keywordAuthorThermal stability-
dc.subject.keywordAuthorChemical stability-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE