Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kang, Sung-Gyu | - |
dc.contributor.author | Jeong, Kyeongjae | - |
dc.contributor.author | Paeng, Jeongin | - |
dc.contributor.author | Jeong, Wonseok | - |
dc.contributor.author | Han, Seungwu | - |
dc.contributor.author | Ahn, Jae-Pyeong | - |
dc.contributor.author | Boles, Steven | - |
dc.contributor.author | Han, Heung Nam | - |
dc.contributor.author | Choi, In-Suk | - |
dc.date.accessioned | 2024-01-19T11:01:52Z | - |
dc.date.available | 2024-01-19T11:01:52Z | - |
dc.date.created | 2022-10-27 | - |
dc.date.issued | 2022-10 | - |
dc.identifier.issn | 1359-6454 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/114473 | - |
dc.description.abstract | Amorphous silica deforms viscoplastically at elevated temperatures, which is common for brittle glasses. The key mechanism of viscoplastic deformation involves interatomic bond switching, which is thermally activated. Here, we precisely control the mechanical shaping of brittle amorphous silica at the nanoscale via engineered electron-matter interactions without heating. We observe a ductile plastic deformation of amorphous silica under a focused scanning electron beam with low acceleration voltages (few to tens of kilovolts) during in-situ compression studies, with unique dependence on the acceleration voltage and beam current. By simulating the electron-matter interaction, we show that the deformation of amorphous silica depends strongly on the volume where inelastic scattering occurs. The electron-matter interaction via e-beam irradiation alters the Si-O interatomic bonds, enabling the high-temperature deformation behavior of amorphous silica to occur athermally. Finally, by systematically controlling the electron- matter interaction volume, it is possible to mechanically shape the brittle amorphous silica on a small scale at room temperature to a level comparable to glass shaping at high temperatures. The findings can be extended to develop new fabrication processes for nano- and microscale brittle glasses.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Athermal glass work at the nanoscale: Engineered electron-b eam-induce d viscoplasticity for mechanical shaping of brittle amorphous silica | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.actamat.2022.118203 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Acta Materialia, v.238 | - |
dc.citation.title | Acta Materialia | - |
dc.citation.volume | 238 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000861373400010 | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | STRAIN-RATE SENSITIVITY | - |
dc.subject.keywordPlus | POROUS SILICA | - |
dc.subject.keywordPlus | HOLLOW SILICA | - |
dc.subject.keywordPlus | DENSIFICATION | - |
dc.subject.keywordPlus | DEFORMATION | - |
dc.subject.keywordPlus | SIZE | - |
dc.subject.keywordPlus | NANOSTRUCTURES | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | MICROSCOPY | - |
dc.subject.keywordPlus | CERAMICS | - |
dc.subject.keywordAuthor | Amorphous silica | - |
dc.subject.keywordAuthor | Ductility | - |
dc.subject.keywordAuthor | Viscoplastic deformation | - |
dc.subject.keywordAuthor | Interaction volume | - |
dc.subject.keywordAuthor | E-beam | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.