Full metadata record

DC Field Value Language
dc.contributor.authorLee, Heehyeon-
dc.contributor.authorOh, Jongwon-
dc.contributor.authorKoo, Jin Young-
dc.contributor.authorOhtsu, Hiroyoshi-
dc.contributor.authorJin, Hyeong Min-
dc.contributor.authorKim, Soyoung-
dc.contributor.authorLee, Jae-Seung-
dc.contributor.authorKim, Hyunchul-
dc.contributor.authorChoi, Hee Cheul-
dc.contributor.authorOh, Youngtak-
dc.contributor.authorYoon, Seok Min-
dc.date.accessioned2024-01-19T11:02:14Z-
dc.date.available2024-01-19T11:02:14Z-
dc.date.created2022-10-20-
dc.date.issued2022-10-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114492-
dc.description.abstractTypical amorphous aerogels pose great potential for CO2 adsorbents with high surface areas and facile diffusion, but they lack well-defined porosity and specific selectivity, inhibiting utilization of their full functionality. To assign well-defined porous structures to aerogels, a hierarchical metal-organic aerogel (HMOA) is designed, which consists of well-defined micropores (d similar to 1 nm) by coordinative integration with chromium(III) and organic ligands. Due to its hierarchical structure with intrinsically flexible coordination, the HMOA has excellent porous features of a high surface area and a reusable surface with appropriate binding energy for CO2 adsorption. The HMOA features high CO2 adsorption capacity, high CO2/N2 IAST selectivity, and vacuum-induced surface regenerability (100% through 20 cycles). Further, the HMOA could be prepared via simple ambient drying methods while retaining the microporous network. This unique surface-tension-resistant micropore formation and flexible coordination systems of HMOA make it a potential candidate for a CO2 adsorbent with industrial scalability and reproducibility.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleHierarchical Metal-Organic Aerogel as a Highly Selective and Sustainable CO2 Adsorbent-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.2c14453-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.14, no.41, pp.46682 - 46694-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume14-
dc.citation.number41-
dc.citation.startPage46682-
dc.citation.endPage46694-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000866254400001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE CAPTURE-
dc.subject.keywordPlusISOSTERIC HEATS-
dc.subject.keywordPlusGAS-ADSORPTION-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusGELS-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusSTRATEGY-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordAuthorreusable CO2 adsorbents-
dc.subject.keywordAuthorgas selectivity-
dc.subject.keywordAuthorhierarchical metal-organic aerogel-
dc.subject.keywordAuthormicroporous materials-
dc.subject.keywordAuthormetal-organic gel-
dc.subject.keywordAuthorpaddle-wheel structure-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE