Atomic-Scale Homogeneous Ru-Cu Alloy Nanoparticles for Highly Efficient Electrocatalytic Nitrogen Reduction
- Authors
- Kim, Chansol; Song, Ji-Yoon; Choi, Changhyeok; Ha, Jin Pil; Lee, Wonmoo; Nam, Yoon Tae; Lee, Dong-myeong; Kim, Gunjoo; Gereige, Issam; Jung, Woo-Bin; Lee, Hyunjoo; Jung, Yousung; Jeong, Hyeonsu; Jung, Hee-Tae
- Issue Date
- 2022-10
- Publisher
- WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- Citation
- Advanced Materials, v.34, no.40
- Abstract
- Ruthenium (Ru) is the most widely used metal as an electrocatalyst for nitrogen (N-2) reduction reaction (NRR) because of the relatively high N-2 adsorption strength for successive reaction. Recently, it has been well reported that the homogeneous Ru-based metal alloys such as Ru-Rh, Ru-Pt, and Ru-Co significantly enhance the selectivity and formation rate of ammonia (NH3). However, the metal combinations for NRR have been limited to several miscible combinations of metals with Ru, although various immiscible combinations have immense potential to show high NRR performance. In this study, an immiscible combination of Ru and copper (Cu) is first utilized, and homogeneous alloy nanoparticles (Ru-Cu NPs) are fabricated by the carbothermal shock method. The Ru-Cu homogeneous NP alloys on cellulose/carbon nanotube sponge exhibit the highest selectivity and NH3 formation rate of approximate to 31% and -73 mu mol h(-1) cm(-2), respectively. These are the highest values of the selectivity and NH3 formation rates among existing Ru-based alloy metal combinations.
- Keywords
- AMBIENT CONDITIONS; RATIONAL DESIGN; AMMONIA; CATALYSTS; ELECTROREDUCTION; FIXATION; METALS; carbothermal shock; cellulose; electrocatalytic nitrogen reduction; homogeneous alloys; immiscible metals; rapid cooling process; ruthenium
- ISSN
- 0935-9648
- URI
- https://pubs.kist.re.kr/handle/201004/114513
- DOI
- 10.1002/adma.202205270
- Appears in Collections:
- KIST Article > 2022
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.