Full metadata record

DC Field Value Language
dc.contributor.authorKim, Ji Eun-
dc.contributor.authorKwon, Jae Uk-
dc.contributor.authorChun, Suk Yeop-
dc.contributor.authorSong, Young Geun-
dc.contributor.authorJeong, Doo Seok-
dc.contributor.authorKang, Chong-Yun-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorNahm, Sahn-
dc.contributor.authorYoon, Jung Ho-
dc.date.accessioned2024-01-19T11:03:07Z-
dc.date.available2024-01-19T11:03:07Z-
dc.date.created2022-07-08-
dc.date.issued2022-10-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114535-
dc.description.abstractMobile species and matrix materials in ion motion-mediated memristors predominantly determine the switching characteristics and device performance. As a result of exploring a new type of mobile species, a Ru ion-mediated electrochemical metallization-like memristor with an amorphous oxide matrix is recently suggested to achieve a low switching current, voltage, and good retention simultaneously. Although the ion migration of Ru in the oxide matrix is previously confirmed, no in-depth study on how the crystallinity of the oxide matrix influences the Ru ion motion and switching characteristics has not been reported. Therefore, in this study, the crystallinity-dependent resistive switching behavior of the Pt/HfO2/Ru structure device is investigated. With the crystallized HfO2 layer, the preferred Ru ion migration through the grain boundaries occurs owing to the enhanced ion mobility, resulting in a high switching current (approximate to 100 mu A) with continuous metallic Ru conducting filaments. The discontinuous conducting filaments with amorphous HfO2 exhibit a low switching current. In addition, highly linear and symmetric conductance modulation properties are achieved, and over 91.5% accuracy in the Mixed National Institute of Standards and Technology (MNIST) pattern recognition test is demonstrated.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleLow Energy and Analog Memristor Enabled by Regulation of Ru ion Motion for High Precision Neuromorphic Computing-
dc.typeArticle-
dc.identifier.doi10.1002/aelm.202200365-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Electronic Materials, v.8, no.10-
dc.citation.titleAdvanced Electronic Materials-
dc.citation.volume8-
dc.citation.number10-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000817811000001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordAuthorcrystallinity-dependent-
dc.subject.keywordAuthorlow currents-
dc.subject.keywordAuthormemristors-
dc.subject.keywordAuthoranalog switching-
dc.subject.keywordAuthorconductance modulation-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE