Full metadata record

DC Field Value Language
dc.contributor.authorNguyen, Tuan Loi-
dc.contributor.authorVo, Thuan Ngoc-
dc.contributor.authorPhung, Viet Duc-
dc.contributor.authorAyalew, Kaleab-
dc.contributor.authorChun, Dongwon-
dc.contributor.authorLuu, Anh Tuyen-
dc.contributor.authorNguyen, Quang Hung-
dc.contributor.authorKim, Kwang J.-
dc.contributor.authorKim, Il Tae-
dc.contributor.authorMoon, Jaeyun-
dc.date.accessioned2024-01-19T11:03:08Z-
dc.date.available2024-01-19T11:03:08Z-
dc.date.created2022-06-30-
dc.date.issued2022-10-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114536-
dc.description.abstractTwo orthorhombic salts (OHMs) of Na2MoO4.(H2O)(2) were prepared at 130 C (OHMs_130) and 170 C (OHMs_170) via a hydrothermal process, followed by heat treatment. Advanced analyses proved the formation mechanism of the layered structures of unique OHMs. All OHMs possessed layered structures with many empty channels and numerous oxygen vacancies (VO). VO were formed due to the absence of O atoms in tetrahedra MoO4 (Vsh-O) and the loss of H2O molecules (Vwater-O) in the OHMs structure. Despite the micro-sizes of OHMs crystals, the OHMs-based anodes in Li-ion batteries exhibited superior cyclic and rate performance. OHMs_170 electrode exhibited higher capacity retention (91.6% after 200 cycles) and rate capability (80% at 3 A g-1) than OHMs_130. It is attributed to the advantageous formation of a higher amount of Vwater-O and a low amount of Vsh-O in the OHMs_170 leading to the stable structure of the electrodes and fast Li+ ion movements during charge/ discharge processes. In addition, the electrochemical impedance spectroscopy, Randles-Sevcik equation, and kinetic study results suggested that the exceptional performance of the OHMs_170 electrode came from low resistance, pseudo behavior, and fast Li+ mobility inside the OHMs structure.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleLi-ion storage in orthorhombic hydrated sodium molybdate with oxygen-vacancy defects-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2022.137174-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.446-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume446-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000810935700003-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusLI2MOO4-
dc.subject.keywordPlusNA2MOO4-
dc.subject.keywordPlusBI2WO6-
dc.subject.keywordPlusCAMOO4-
dc.subject.keywordPlusXPS-
dc.subject.keywordAuthorSodium molybdates-
dc.subject.keywordAuthorLithium-ion batteries-
dc.subject.keywordAuthorStructural tuning-
dc.subject.keywordAuthorDefect engineering-
dc.subject.keywordAuthor3D channels-
dc.subject.keywordAuthorOxygen vacancies-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE