Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Taehyun-
dc.contributor.authorLim, Youngjoon-
dc.contributor.authorCho, Jinwon-
dc.contributor.authorLawler, Robin-
dc.contributor.authorMin, Byeong Jo-
dc.contributor.authorGoddard III, William A.-
dc.contributor.authorJang, Seung Soon-
dc.contributor.authorKim, Jin Young-
dc.date.accessioned2024-01-19T11:03:25Z-
dc.date.available2024-01-19T11:03:25Z-
dc.date.created2022-11-10-
dc.date.issued2022-09-
dc.identifier.issn1369-7021-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114550-
dc.description.abstractWhile polymer electrolyte membrane fuel cells (PEMFCs) have surged in popularity due to their low environmental impact and high efficiency, their susceptibility to degradation by in-situ generated peroxide and oxygen radical species has prevented their widespread adoption. To alleviate chemical attack on components of PEMFCs, particularly on polymer electrolyte membranes (PEMs), antioxidant approaches have been the subject of enormous interest as a key solution because they can directly scavenge and remove detrimental peroxide and oxygen radical species. However, a consequence is that long-term PEMFC device operation can cause undesirable adverse degradation of antioxidant additives provoked by the distinctive chemical/electrochemical environment of low pH, electric potential, water flux, and ion exchange/concentration gradient. Moreover, changes in the physical state such as migration, agglomeration, and dissolution of antioxidants by mechanical or chemical pressures are serious problems that gradually deteriorate antioxidant activity and capacity. This review presents current opportunities for and limitations to antioxidant therapy for durability enhancement in PEMs for electrochemical device applications. We also provide a summary of advanced synthetic design strategies and in-depth analyses of antioxidants regarding optimizing activity-stability factors. This review will bring new insight into the design to realization of ideal antioxidant nanostructures for PEMs and open up new opportunities for enhancing proliferation of durable PEMFCs.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleAntioxidant technology for durability enhancement in polymer electrolyte membranes for fuel cell applications-
dc.typeArticle-
dc.identifier.doi10.1016/j.mattod.2022.06.021-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials Today, v.58, pp.135 - 163-
dc.citation.titleMaterials Today-
dc.citation.volume58-
dc.citation.startPage135-
dc.citation.endPage163-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000875412100004-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPROTON-EXCHANGE MEMBRANE-
dc.subject.keywordPlusCERIUM OXIDE NANOPARTICLES-
dc.subject.keywordPlusPERFLUOROSULFONIC ACID MEMBRANES-
dc.subject.keywordPlusCHEMICAL DEGRADATION MECHANISM-
dc.subject.keywordPlusSULFONE) COMPOSITE MEMBRANES-
dc.subject.keywordPlusRADICAL SCAVENGING ACTIVITY-
dc.subject.keywordPlusLOW-INDEX SURFACES-
dc.subject.keywordPlusZR-DOPED CERIA-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusCATALYTIC DECOMPOSITION-
dc.subject.keywordAuthorAntioxidant-
dc.subject.keywordAuthorPolymer electrolyte membrane-
dc.subject.keywordAuthorPer fluorosulfonic acid-
dc.subject.keywordAuthorFuel cell-
dc.subject.keywordAuthorDurability-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE