Full metadata record

DC Field Value Language
dc.contributor.authorShin, Seung-Jae-
dc.contributor.authorChoi, Hansol-
dc.contributor.authorRinge, Stefan-
dc.contributor.authorWon, Da Hye-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorKim, Dong Hyun-
dc.contributor.authorLee, Taemin-
dc.contributor.authorNam, Dae-Hyun-
dc.contributor.authorKim, Hyungjun-
dc.contributor.authorChoi, Chang Hyuck-
dc.date.accessioned2024-01-19T11:04:00Z-
dc.date.available2024-01-19T11:04:00Z-
dc.date.created2022-09-29-
dc.date.issued2022-09-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114583-
dc.description.abstractElectrocatalysis, whose reaction venue locates at the catalyst-electrolyte interface, is controlled by the electron transfer across the electric double layer, envisaging a mechanistic link between the electron transfer rate and the electric double layer structure. A fine example is in the CO2 reduction reaction, of which rate shows a strong dependence on the alkali metal cation (M+) identity, but there is yet to be a unified molecular picture for that. Using quantum-mechanics-based atom-scale simulation, we herein scrutinize the M+-coupling capability to possible intermediates, and establish H+- and M+-associated ET mechanisms for CH4 and CO/C2H4 formations, respectively. These theoretical scenarios are successfully underpinned by Nernstian shifts of polarization curves with the H+ or M+ concentrations and the first-order kinetics of CO/C2H4 formation on the electrode surface charge density. Our finding further rationalizes the merit of using Nafion-coated electrode for enhanced C2 production in terms of enhanced surface charge density. CO2 reduction rate shows a strong dependence on alkali metal cation identity but a unified molecular picture for underlying mechanism requires further investigation. Using advanced molecular simulations and experimental kinetic studies, here the authors establish a unified mechanism for cation-coupled electron transfer.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleA unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-022-33199-8-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.13, no.1-
dc.citation.titleNature Communications-
dc.citation.volume13-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000855490900012-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusALKALI-METAL CATIONS-
dc.subject.keywordPlusELECTROCHEMICAL REDUCTION-
dc.subject.keywordPlusFREE-ENERGY-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusAU-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE