Full metadata record

DC Field Value Language
dc.contributor.authorMinh Do Hoang-
dc.contributor.authorChoi, Jong-Suk-
dc.contributor.authorYun, Sang-Seok-
dc.date.accessioned2024-01-19T11:08:00Z-
dc.date.available2024-01-19T11:08:00Z-
dc.date.created2022-02-28-
dc.date.issued2017-06-
dc.identifier.issn2325-033X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114640-
dc.description.abstractThis paper proposed a reliable recovery mechanism for person-following robot in case of missing target. The prior information such as previous human positons (before losing point) is used in order to predict the unexpected human positions by probabilistic approach (using Kalman Filter). In addition, map information is also utilized which allows robot to grasp searching route in order to redetect human target. Map also assists the robot in navigating smoothly with obstacle avoidance function to reach the human target. The experimental results demonstrate the outperfounance of proposed recovery mechanism.-
dc.languageEnglish-
dc.publisherIEEE-
dc.titleThe reliable recovery mechanism for person-following robot in case of missing target-
dc.typeConference-
dc.description.journalClass1-
dc.identifier.bibliographicCitation14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp.800 - 803-
dc.citation.title14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)-
dc.citation.startPage800-
dc.citation.endPage803-
dc.citation.conferencePlaceUS-
dc.citation.conferencePlaceJeju, SOUTH KOREA-
dc.citation.conferenceDate2017-06-28-
dc.relation.isPartOf2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI)-
dc.identifier.wosid000426976900208-
dc.identifier.scopusid2-s2.0-85034238660-
Appears in Collections:
KIST Conference Paper > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE