Full metadata record

DC Field Value Language
dc.contributor.authorSkov, Lasse N.-
dc.contributor.authorGrinderslev, Jakob B.-
dc.contributor.authorRosenkranz, Asger-
dc.contributor.authorLee, Young-Su-
dc.contributor.authorJensen, Torben R.-
dc.date.accessioned2024-01-19T11:30:33Z-
dc.date.available2024-01-19T11:30:33Z-
dc.date.created2022-07-14-
dc.date.issued2022-09-
dc.identifier.issn2566-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114744-
dc.description.abstractSolid-state inorganic magnesium batteries are considered as potential high energy storage devices of the future. Here we present a series of magnesium borohydride tetrahydrofuran (THF) composites, Mg(BH4)(2)center dot xTHF(-MgO), 0 <= x <= 3, as solid-state electrolytes for magnesium batteries. Three new monoclinic compounds were identified, Mg(BH4)(2)center dot 2/3THF (Cc), alpha-Mg(BH4)(2)center dot 2THF (P2(1)/c) and beta-Mg(BH4)(2)center dot 2THF (C2), and the detailed structures of alpha- and beta-Mg(BH4)(2)center dot 2THF are presented. The magnesium ionic conductivity of composites formed by these compounds were several orders of magnitude higher than that of the distinct compounds, x=0, 2/3, 2, and 3. The nanocomposite stabilized by MgO nanoparticles (similar to 50 nm), Mg(BH4)(2)center dot 1.5THF-MgO(75 wt%), displayed the highest Mg2+ conductivity, sigma(Mg2+)similar to 10(-4) S cm(-1) at 70 degrees C, a high ionic transport number of t(ion)=0.99, and cyclic voltammetry revealed an oxidative stability of similar to 1.2 V vs. Mg/Mg2+. The electrolyte was stable towards magnesium electrodes, which allowed for stable Mg plating/stripping for at least 100 cycles at 55 degrees C with a current density of 0.1 mA cm(-2). Finally, a proof-of-concept rechargeable solid-state magnesium battery was assembled with a magnesium metal anode and a TiS2 cathode. A maximum discharge capacity of 94.2 mAh g(-1) was displayed, which corresponds to y=0.2 in MgyTiS2.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleTowards Solid-State Magnesium Batteries: Ligand-Assisted Superionic Conductivity-
dc.typeArticle-
dc.identifier.doi10.1002/batt.202200163-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBatteries & Supercaps, v.5, no.9-
dc.citation.titleBatteries & Supercaps-
dc.citation.volume5-
dc.citation.number9-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000821077600001-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMETAL-HYDRIDES-
dc.subject.keywordPlusBOROHYDRIDE-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordAuthormagnesium batteries-
dc.subject.keywordAuthormagnesium conductors-
dc.subject.keywordAuthornanocomposites-
dc.subject.keywordAuthorsolid electrolytes-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE