Full metadata record

DC Field Value Language
dc.contributor.authorLee, Yongseok-
dc.contributor.authorPark, Hyunyoung-
dc.contributor.authorCho, Min-kyung-
dc.contributor.authorAhn, Jinho-
dc.contributor.authorKo, Wonseok-
dc.contributor.authorKang, Jungmin-
dc.contributor.authorChoi, Yoo Jung-
dc.contributor.authorKim, Hyungsub-
dc.contributor.authorPark, Inchul-
dc.contributor.authorRyu, Won-Hee-
dc.contributor.authorHong, Jihyun-
dc.contributor.authorKim, Jongsoon-
dc.date.accessioned2024-01-19T11:30:35Z-
dc.date.available2024-01-19T11:30:35Z-
dc.date.created2022-07-08-
dc.date.issued2022-09-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114746-
dc.description.abstractAlthough Li2MnO3 exhibits high capacity via anionic oxygen redox, it suffers from rapid capacity decay owing to structural disordering accompanying irreversible Mn migration and O-2 release. To promote the reversibility of the anionic redox reaction, Li1.8Mg0.3Mn0.9O3 as a novel cathode material, prepared by partially substituting Li+ and Mn4+ of Li2MnO3 with the redox-inactive Mg2+ as a structural stabilizer is proposed. Li1.8Mg0.3Mn0.9O3 delivers a high specific capacity and energy density of approximate to 310 mAh g(-1) and approximate to 915 Wh kg(-1), respectively. In particular, the power-capability and cycle performance of Li1.8Mg0.3Mn0.9O3 greatly surpass those of Li2MnO3. Through first-principles calculations and various experiments, it is revealed that Mg substitution effectively suppresses the Mn migration by stabilizing Mn cations in the original sites at the charged state. The energetically stabilized layered structure disfavors the distortion of the MnO6 octahedra, which induces the oxygen dimer (O-O) formation through the metal-oxygen decoordination, thus mitigating oxygen release.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleLi-Rich Mn-Mg Layered Oxide as a Novel Ni-/Co-Free Cathode-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202204354-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.32, no.36-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume32-
dc.citation.number36-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000817792000001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusLI2MNO3 CATHODE-
dc.subject.keywordPlusELECTRONIC-STRUCTURE-
dc.subject.keywordPlusREDOX CHEMISTRY-
dc.subject.keywordPlusANIONIC REDOX-
dc.subject.keywordPlusION-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusACTIVATION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusVOLTAGE-
dc.subject.keywordAuthorcathodes-
dc.subject.keywordAuthorhigh energy-
dc.subject.keywordAuthorLi-ion batteries-
dc.subject.keywordAuthorLi-rich layered oxides-
dc.subject.keywordAuthorlow costs-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE