Full metadata record

DC Field Value Language
dc.contributor.authorEjaz, Faizan-
dc.contributor.authorHwang, Leslie K.-
dc.contributor.authorSon, Jangyup-
dc.contributor.authorKim, Jin-Sang-
dc.contributor.authorLee, Dong Su-
dc.contributor.authorKwon, Beomjin-
dc.date.accessioned2024-01-19T11:31:28Z-
dc.date.available2024-01-19T11:31:28Z-
dc.date.created2022-09-08-
dc.date.issued2022-08-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114790-
dc.description.abstractThis article explores the deep learning approach towards approximating the effective electrical and thermal conductivities of copper (Cu)-carbon nanotube (CNT) composites with CNTs aligned to the field direction. Convolutional neural networks (CNN) are trained to map the two-dimensional images of stochastic Cu-CNT networks to corresponding conductivities. The CNN model learns to estimate the Cu-CNT composite conductivities for various CNT volume fractions, interfacial electrical resistances, R-c = 20 omega-20 k omega, and interfacial thermal resistances, R-t,c('') = 10(-10)-10(-7) m(2)K/W. For training the CNNs, the hyperparameters such as learning rate, minibatch size, and hidden layer neurons are optimized. Without iteratively solving the physical governing equations, the trained CNN model approximates the electrical and thermal conductivities within a second with the coefficient of determination (R-2) greater than 98%, which may take longer than 100 min for a convectional numerical simulation. This work demonstrates the potential of the deep learning surrogate model for the complex transport processes in composite materials.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleConvolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites-
dc.typeArticle-
dc.identifier.doi10.1038/s41598-022-16867-z-
dc.description.journalClass1-
dc.identifier.bibliographicCitationScientific Reports, v.12, no.1-
dc.citation.titleScientific Reports-
dc.citation.volume12-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000838755800001-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusFABRICATION-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE