Full metadata record

DC Field Value Language
dc.contributor.authorKim, Young-Hoon-
dc.contributor.authorAn, Jae-Hyun-
dc.contributor.authorKim, Sung-Yeob-
dc.contributor.authorLi, Xiangmei-
dc.contributor.authorSong, Eun-Ji-
dc.contributor.authorPark, Jae-Ho-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorChoi, Yong-Seok-
dc.contributor.authorScanlon, David O.-
dc.contributor.authorAhn, Hyo-Jun-
dc.contributor.authorLee, Jae-Chul-
dc.date.accessioned2024-01-19T11:34:07Z-
dc.date.available2024-01-19T11:34:07Z-
dc.date.created2022-06-17-
dc.date.issued2022-07-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114915-
dc.description.abstractIt is challenging to develop alloying anodes with ultrafast charging and large energy storage using bulk anode materials because of the difficulty of carrier-ion diffusion and fragmentation of the active electrode material. Herein, a rational strategy is reported to design bulk Bi anodes for Na-ion batteries that feature ultrafast charging, long cyclability, and large energy storage without using expensive nanomaterials and surface modifications. It is found that bulk Bi particles gradually transform into a porous nanostructure during cycling in a glyme-based electrolyte, whereas the resultant structure stores Na ions by forming phases with high Na diffusivity. These features allow the anodes to exhibit unprecedented electrochemical properties; the developed Na-Bi half-cell delivers 379 mA h g(-1) (97% of that measured at 1C) at 7.7 A g(-1) (20C) during 3500 cycles. It also retained 94% and 93% of the capacity measured at 1C even at extremely fast-charging rates of 80C and 100C, respectively. The structural origins of the measured properties are verified by experiments and first-principles calculations. The findings of this study not only broaden understanding of the underlying mechanisms of fast-charging anodes, but also provide basic guidelines for searching battery anodes that simultaneously exhibit high capacities, fast kinetics, and long cycling stabilities.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleEnabling 100C Fast-Charging Bulk Bi Anodes for Na-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202201446-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials, v.34, no.27-
dc.citation.titleAdvanced Materials-
dc.citation.volume34-
dc.citation.number27-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000804990900001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION-
dc.subject.keywordPlusTIN NANOPARTICLES-
dc.subject.keywordPlusMICROSIZED SN-
dc.subject.keywordPlusULTRA-FAST-
dc.subject.keywordPlusSODIUM-
dc.subject.keywordPlusBISMUTH-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusSODIATION-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordAuthor3D porous nanostructures-
dc.subject.keywordAuthorbismuth anodes-
dc.subject.keywordAuthorsodium-ion batteries-
dc.subject.keywordAuthorultrafast charging-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE