Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Junbeom-
dc.contributor.authorCho, Kyungjin-
dc.contributor.authorKang, Jinkyu-
dc.contributor.authorPark, Suin-
dc.contributor.authorAda, Okpete Uchenna Esther-
dc.contributor.authorPark, Jihye-
dc.contributor.authorSong, Minsu-
dc.contributor.authorLy, Quang Viet-
dc.contributor.authorBae, Hyokwan-
dc.date.accessioned2024-01-19T11:34:09Z-
dc.date.available2024-01-19T11:34:09Z-
dc.date.created2022-06-17-
dc.date.issued2022-07-
dc.identifier.issn0960-8524-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114917-
dc.description.abstractIn this study, the stability of the total nitrogen removal efficiency (TNRE) was modeled using an artificial neural network (ANN)-based binary classification model for the anaerobic ammonium oxidation (AMX) process under saline conditions. The TNRE was stabilized to 80.2 +/- 11.4% at the final phase under the salinity of 1.0 +/-& nbsp;0.02%. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis showed the predominance of Candidatus Jettenia genus. Real-time quantitative PCR analysis revealed the average abundance of Ca. Jettenia and Kuenenia spp. increased in 3.2 +/- 5.4 x 108 and 2.0 +/- 2.2 x 105 copies/mL, respectively. The prediction accuracy using operational parameters with data augmentation was 88.2%. However, integration with T-RFLP and real-time qPCR signals improved the prediction accuracy by 97.1%. This study revealed the feasible application of machine learning and biomolecular signals to the stability prediction of the AMX process under increased salinity.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleCombined machine learning and biomolecular analysis for stability assessment of anaerobic ammonium oxidation under salt stress-
dc.typeArticle-
dc.identifier.doi10.1016/j.biortech.2022.127206-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBioresource Technology, v.355-
dc.citation.titleBioresource Technology-
dc.citation.volume355-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000799612900005-
dc.relation.journalWebOfScienceCategoryAgricultural Engineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusNITROGEN-REMOVAL-
dc.subject.keywordPlusSALINITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusADAPTATION-
dc.subject.keywordPlusREACTOR-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusMICROBIAL COMMUNITY-
dc.subject.keywordPlusOXIDIZING BACTERIA-
dc.subject.keywordPlusANAMMOX BACTERIA-
dc.subject.keywordAuthorAnammox-
dc.subject.keywordAuthorSalinity effect-
dc.subject.keywordAuthorArtificial-neural network-
dc.subject.keywordAuthorT-RFLP-
dc.subject.keywordAuthorReal-time qPCR-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE