Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jeon, Junbeom | - |
dc.contributor.author | Cho, Kyungjin | - |
dc.contributor.author | Kang, Jinkyu | - |
dc.contributor.author | Park, Suin | - |
dc.contributor.author | Ada, Okpete Uchenna Esther | - |
dc.contributor.author | Park, Jihye | - |
dc.contributor.author | Song, Minsu | - |
dc.contributor.author | Ly, Quang Viet | - |
dc.contributor.author | Bae, Hyokwan | - |
dc.date.accessioned | 2024-01-19T11:34:09Z | - |
dc.date.available | 2024-01-19T11:34:09Z | - |
dc.date.created | 2022-06-17 | - |
dc.date.issued | 2022-07 | - |
dc.identifier.issn | 0960-8524 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/114917 | - |
dc.description.abstract | In this study, the stability of the total nitrogen removal efficiency (TNRE) was modeled using an artificial neural network (ANN)-based binary classification model for the anaerobic ammonium oxidation (AMX) process under saline conditions. The TNRE was stabilized to 80.2 +/- 11.4% at the final phase under the salinity of 1.0 +/-& nbsp;0.02%. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis showed the predominance of Candidatus Jettenia genus. Real-time quantitative PCR analysis revealed the average abundance of Ca. Jettenia and Kuenenia spp. increased in 3.2 +/- 5.4 x 108 and 2.0 +/- 2.2 x 105 copies/mL, respectively. The prediction accuracy using operational parameters with data augmentation was 88.2%. However, integration with T-RFLP and real-time qPCR signals improved the prediction accuracy by 97.1%. This study revealed the feasible application of machine learning and biomolecular signals to the stability prediction of the AMX process under increased salinity. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Combined machine learning and biomolecular analysis for stability assessment of anaerobic ammonium oxidation under salt stress | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.biortech.2022.127206 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Bioresource Technology, v.355 | - |
dc.citation.title | Bioresource Technology | - |
dc.citation.volume | 355 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000799612900005 | - |
dc.relation.journalWebOfScienceCategory | Agricultural Engineering | - |
dc.relation.journalWebOfScienceCategory | Biotechnology & Applied Microbiology | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalResearchArea | Agriculture | - |
dc.relation.journalResearchArea | Biotechnology & Applied Microbiology | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | NITROGEN-REMOVAL | - |
dc.subject.keywordPlus | SALINITY | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | ADAPTATION | - |
dc.subject.keywordPlus | REACTOR | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordPlus | MICROBIAL COMMUNITY | - |
dc.subject.keywordPlus | OXIDIZING BACTERIA | - |
dc.subject.keywordPlus | ANAMMOX BACTERIA | - |
dc.subject.keywordAuthor | Anammox | - |
dc.subject.keywordAuthor | Salinity effect | - |
dc.subject.keywordAuthor | Artificial-neural network | - |
dc.subject.keywordAuthor | T-RFLP | - |
dc.subject.keywordAuthor | Real-time qPCR | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.