Full metadata record

DC Field Value Language
dc.contributor.authorOh, Heeyoon-
dc.contributor.authorKang, Gumin-
dc.contributor.authorPark, Minwoo-
dc.date.accessioned2024-01-19T11:34:32Z-
dc.date.available2024-01-19T11:34:32Z-
dc.date.created2022-04-21-
dc.date.issued2022-07-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114937-
dc.description.abstractInterfacial engineering of perovskite solar cells (PSCs) has been a core process for enhancing their power conversion efficiencies (PCEs) and environmental stability. Particularly, polymeric passivation of a metal oxide-electron transport layer (ETL) not only leads to a reduction in its surface defects but also improves the morphology of perovskite. However, the dissolution of the passivation layers by dimethylformamide (DMF) in a perovskite solution can cause a significant drop in the PCE and reproducibility of devices. Herein, oxidized poly (4-vinylpyridine) (O-P4VP) is used as a bifunctional passivation layer. The O-P4VP layers are completely insoluble in DMF, which accompanies the highly reproducible deposition of perovskites without damaging the layers. Furthermore, based on metal-pyridine complexation, oxygen vacancies on the surface of the SnO2 ETLs are passivated with the O-P4VP layers, and the perovskite grains become enlarged by the controlled nucleation and growth rate. The synergetic effects of interfacial passivation present deeper energy levels of the ETL and a prolonged photoluminescence lifetime of the perovskites. The resulting PCE jumps from 19.05% to 21.11% with respect to the pristine device, and the value is retained for 720 h under 1 sun illumination.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleFormation of Metal Cation/Oxidized Pyridine Complexes-Based Bifunctional Interfacial Layer for Fabrication of Highly Efficient and Reproducible Perovskite Solar Cells-
dc.typeArticle-
dc.identifier.doi10.1002/solr.202200163-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSolar RRL, v.6, no.7-
dc.citation.titleSolar RRL-
dc.citation.volume6-
dc.citation.number7-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000779885800001-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRON-TRANSPORT LAYER-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusLOW-TEMPERATURE-
dc.subject.keywordPlusFILL FACTORS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPROGRESS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusFIBERS-
dc.subject.keywordAuthorcomplexation-
dc.subject.keywordAuthorinterfacial passivation-
dc.subject.keywordAuthorperovskite solar cells poly (4-vinylpyridine)-
dc.subject.keywordAuthorUV-ozone treatments-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE