Full metadata record

DC Field Value Language
dc.contributor.authorChung, Sang Hun-
dc.contributor.authorLee, Jong Min-
dc.contributor.authorKim, Seung-Jong-
dc.contributor.authorHwang, Yoha-
dc.contributor.authorAn, Jinung-
dc.date.accessioned2024-01-19T11:40:10Z-
dc.date.available2024-01-19T11:40:10Z-
dc.date.created2022-03-07-
dc.date.issued2015-
dc.identifier.issn2159-6255-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115062-
dc.description.abstractThis paper presents a framework for classifying sit-to-stand and stand-to-sit from just two channel EMG signals taken from the left leg. Our proposed framework uses linear discriminant analysis (LDA) as the classifier and a multi-window feature extraction approach termed Consecutive Time-Windowed Feature Extraction (CTFE). We present the prelimnary results from 2 healthy subjects as a proof of concept. With the two tested subjects, we got predictive accuracies above 90%. The results show promise for a framework capable of recognizing the user's intention of sit-to-stand and stand-to-sit. Potential applications include rehabilitation robots for hemiparesis patients and exoskeleton control.-
dc.languageEnglish-
dc.publisherIEEE-
dc.titleIntention Recognition Method for Sit-to-Stand and Stand-to-Sit from Electromyogram Signals for Overground Lower-Limb Rehabilitation Robots-
dc.typeConference-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp.418 - 421-
dc.citation.titleIEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)-
dc.citation.startPage418-
dc.citation.endPage421-
dc.citation.conferencePlaceUS-
dc.citation.conferencePlaceBusan, SOUTH KOREA-
dc.citation.conferenceDate2015-07-07-
dc.relation.isPartOf2015 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM)-
dc.identifier.wosid000381493900071-
dc.identifier.scopusid2-s2.0-84951109489-
dc.type.docTypeProceedings Paper-
Appears in Collections:
KIST Conference Paper > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE