Full metadata record

DC Field Value Language
dc.contributor.authorYoo, Ju Han-
dc.contributor.authorPark, Sung-Kee-
dc.contributor.authorKim, Dong Hwan-
dc.date.accessioned2024-01-19T11:40:31Z-
dc.date.available2024-01-19T11:40:31Z-
dc.date.created2022-03-01-
dc.date.issued2015-01-
dc.identifier.issn2158-3994-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115080-
dc.description.abstractWe propose a new categorical object recognition algorithm robust to scale changes. We first partition an input image into k regions by using depth data from an RGB-D sensor, and then we estimate the object scale for each partitioned region. Finally, scaled model is applied to recognize the object.-
dc.languageEnglish-
dc.publisherIEEE-
dc.titleCategorical Object Recognition Method Robust to Scale Changes Using Depth Data From an RGB-D Sensor-
dc.typeConference-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE International Conference on Consumer Electronics (ICCE), pp.98 - 99-
dc.citation.titleIEEE International Conference on Consumer Electronics (ICCE)-
dc.citation.startPage98-
dc.citation.endPage99-
dc.citation.conferencePlaceUS-
dc.citation.conferencePlaceLas Vegas, NV-
dc.citation.conferenceDate2015-01-09-
dc.relation.isPartOf2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE)-
dc.identifier.wosid000371904100042-
dc.identifier.scopusid2-s2.0-84936078879-
Appears in Collections:
KIST Conference Paper > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE