Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Hee Jae-
dc.contributor.authorKo, Myoungjae-
dc.contributor.authorKim, In Ho-
dc.contributor.authorYu, Hayoung-
dc.contributor.authorKim, Jin Yong-
dc.contributor.authorYun, Taeyeong-
dc.contributor.authorYang, Joon Seon-
dc.contributor.authorYang, Geon Gug-
dc.contributor.authorJeong, Hyeon Su-
dc.contributor.authorMoon, Myeong Hee-
dc.contributor.authorKim, Sang Ouk-
dc.date.accessioned2024-01-19T12:00:24Z-
dc.date.available2024-01-19T12:00:24Z-
dc.date.created2022-07-14-
dc.date.issued2022-06-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115104-
dc.description.abstractMany interesting properties of 2D materials and their assembled structures are strongly dependent on the lateral size and size distribution of 2D materials. Accordingly, effective size separation of polydisperse 2D sheets is critical for desirable applications. Here, we introduce flow field-flow fractionation (FlFFF) for a wide-range size fractionation of graphene oxide (GO) up to 100 mu m. Two different separation mechanisms are identified for FlFFF, including normal mode and steric/ hyperlayer mode, to size fractionate wide size-distributed GOs while employing a crossflow field for either diffusion or size-controlled migration of GO. Obviously, the 2D GO sheet reveals size separation behavior distinctive from typical spherical particles arising from its innate planar geometry. We also investigate 2D sheet size-dependent mechanical and electrical properties of three different graphene fibers produced from size-fractionated GOs. This FlFFF-based size selection methodology can be used as a generic approach for effective wide-range size separation for 2D materials, including rGO, TMDs, and MXene.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleWide-Range Size Fractionation of Graphene Oxide by Flow Field-Flow Fractionation-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.2c01402-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Nano, v.16, no.6, pp.9172 - 9182-
dc.citation.titleACS Nano-
dc.citation.volume16-
dc.citation.number6-
dc.citation.startPage9172-
dc.citation.endPage9182-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000818757800001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPARTICLE SEPARATION-
dc.subject.keywordPlusSHEETS-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusLIQUID-
dc.subject.keywordPlusFIBER-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordAuthorgraphene oxide-
dc.subject.keywordAuthorsize fractionation-
dc.subject.keywordAuthorflow field-
dc.subject.keywordAuthorflow fractionation-
dc.subject.keywordAuthorgraphene fiber-
dc.subject.keywordAuthor2D materials-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE