Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Faizan, Muhammad | - |
dc.contributor.author | Hussain, Sajjad | - |
dc.contributor.author | Islam, Mobinul | - |
dc.contributor.author | Kim, Ji-Young | - |
dc.contributor.author | Han, Daseul | - |
dc.contributor.author | Bae, Jee Hwan | - |
dc.contributor.author | Vikraman, Dhanasekaran | - |
dc.contributor.author | Ali, Basit | - |
dc.contributor.author | Abbas, Saleem | - |
dc.contributor.author | Kim, Hyun-Seok | - |
dc.contributor.author | Singh, Aditya Narayan | - |
dc.contributor.author | Jung, Jongwan | - |
dc.contributor.author | Nam, Kyung-Wan | - |
dc.date.accessioned | 2024-01-19T12:00:37Z | - |
dc.date.available | 2024-01-19T12:00:37Z | - |
dc.date.created | 2022-07-08 | - |
dc.date.issued | 2022-06 | - |
dc.identifier.issn | 2079-4991 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/115116 | - |
dc.description.abstract | We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS2 nanostructures. MoS2 and MoO3 phases can be readily controlled by straightforward calcination in the (200-300) degrees C temperature range. An optimized temperature of 250 degrees C yields a phase-engineered MoO3@MoS2 hybrid, while 200 and 300 degrees C produce single MoS2 and MoO3 phases. When tested in LIBs anode, the optimized MoO3@MoS2 hybrid outperforms the pristine MoS2 and MoO3 counterparts. With above 99% Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g(-1) after 100 cycles, and maintains a capacity of 278 mAh g(-1) at 700 mA g(-1) current density. These favorable characteristics are attributed to the formation of MoO3 passivation surface layer on MoS2 and reactive interfaces between the two phases, which facilitate the Li-ion insertion/extraction, successively improving MoO3@MoS2 anode performance. | - |
dc.language | English | - |
dc.publisher | MDPI | - |
dc.title | MoO3@MoS2 Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.3390/nano12122008 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Nanomaterials, v.12, no.12 | - |
dc.citation.title | Nanomaterials | - |
dc.citation.volume | 12 | - |
dc.citation.number | 12 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000816458900001 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | FEW-LAYER MOS2 | - |
dc.subject.keywordPlus | ASSISTED SYNTHESIS | - |
dc.subject.keywordPlus | NANOSHEETS | - |
dc.subject.keywordPlus | STORAGE | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | ELECTRODES | - |
dc.subject.keywordPlus | EVOLUTION | - |
dc.subject.keywordPlus | NANOSTRUCTURES | - |
dc.subject.keywordPlus | NANOCOMPOSITE | - |
dc.subject.keywordPlus | COMPOSITES | - |
dc.subject.keywordAuthor | core-shell structure | - |
dc.subject.keywordAuthor | hybrid anode | - |
dc.subject.keywordAuthor | MoS2 | - |
dc.subject.keywordAuthor | MoO3 | - |
dc.subject.keywordAuthor | hydrothermal synthesis | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.