Full metadata record

DC Field Value Language
dc.contributor.authorFaizan, Muhammad-
dc.contributor.authorHussain, Sajjad-
dc.contributor.authorIslam, Mobinul-
dc.contributor.authorKim, Ji-Young-
dc.contributor.authorHan, Daseul-
dc.contributor.authorBae, Jee Hwan-
dc.contributor.authorVikraman, Dhanasekaran-
dc.contributor.authorAli, Basit-
dc.contributor.authorAbbas, Saleem-
dc.contributor.authorKim, Hyun-Seok-
dc.contributor.authorSingh, Aditya Narayan-
dc.contributor.authorJung, Jongwan-
dc.contributor.authorNam, Kyung-Wan-
dc.date.accessioned2024-01-19T12:00:37Z-
dc.date.available2024-01-19T12:00:37Z-
dc.date.created2022-07-08-
dc.date.issued2022-06-
dc.identifier.issn2079-4991-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115116-
dc.description.abstractWe explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS2 nanostructures. MoS2 and MoO3 phases can be readily controlled by straightforward calcination in the (200-300) degrees C temperature range. An optimized temperature of 250 degrees C yields a phase-engineered MoO3@MoS2 hybrid, while 200 and 300 degrees C produce single MoS2 and MoO3 phases. When tested in LIBs anode, the optimized MoO3@MoS2 hybrid outperforms the pristine MoS2 and MoO3 counterparts. With above 99% Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g(-1) after 100 cycles, and maintains a capacity of 278 mAh g(-1) at 700 mA g(-1) current density. These favorable characteristics are attributed to the formation of MoO3 passivation surface layer on MoS2 and reactive interfaces between the two phases, which facilitate the Li-ion insertion/extraction, successively improving MoO3@MoS2 anode performance.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleMoO3@MoS2 Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.3390/nano12122008-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNanomaterials, v.12, no.12-
dc.citation.titleNanomaterials-
dc.citation.volume12-
dc.citation.number12-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000816458900001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusFEW-LAYER MOS2-
dc.subject.keywordPlusASSISTED SYNTHESIS-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordAuthorcore-shell structure-
dc.subject.keywordAuthorhybrid anode-
dc.subject.keywordAuthorMoS2-
dc.subject.keywordAuthorMoO3-
dc.subject.keywordAuthorhydrothermal synthesis-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE