Full metadata record

DC Field Value Language
dc.contributor.authorLee, Junseok-
dc.contributor.authorKim, Seonjeong-
dc.contributor.authorPark, Seongjin-
dc.contributor.authorLee, Jaesang-
dc.contributor.authorHwang, Wonseop-
dc.contributor.authorCho, Seong Won-
dc.contributor.authorLee, Kyuho-
dc.contributor.authorKim, Sun Mi-
dc.contributor.authorSeong, Tae-Yeon-
dc.contributor.authorPark, Cheolmin-
dc.contributor.authorLee, Suyoun-
dc.contributor.authorYi, Hyunjung-
dc.date.accessioned2024-01-19T12:01:29Z-
dc.date.available2024-01-19T12:01:29Z-
dc.date.created2022-05-27-
dc.date.issued2022-06-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115158-
dc.description.abstractMechanical properties of biological systems provide useful information about the biochemical status of cells and tissues. Here, an artificial tactile neuron enabling spiking representation of stiffness and spiking neural network (SNN)-based learning for disease diagnosis is reported. An artificial spiking tactile neuron based on an ovonic threshold switch serving as an artificial soma and a piezoresistive sensor as an artificial mechanoreceptor is developed and shown to encode the elastic stiffness of pressed materials into spike frequency evolution patterns. SNN-based learning of ultrasound elastography images abstracted by spike frequency evolution rate enables the classification of malignancy status of breast tumors with a recognition accuracy up to 95.8%. The stiffness-encoding artificial tactile neuron and learning of spiking-represented stiffness patterns hold a great promise for the identification and classification of tumors for disease diagnosis and robot-assisted surgery with low power consumption, low latency, and yet high accuracy.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleAn Artificial Tactile Neuron Enabling Spiking Representation of Stiffness and Disease Diagnosis-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202201608-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials, v.34, no.24-
dc.citation.titleAdvanced Materials-
dc.citation.volume34-
dc.citation.number24-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000793255800001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusULTRASOUND ELASTOGRAPHY-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusMECHANOMICS-
dc.subject.keywordPlusPARALLEL-
dc.subject.keywordAuthorartificial tactile neurons-
dc.subject.keywordAuthordisease diagnosis-
dc.subject.keywordAuthorelastography-
dc.subject.keywordAuthorneuromorphic sensors-
dc.subject.keywordAuthorovonic threshold switching-
dc.subject.keywordAuthorpiezoresistive sensors-
dc.subject.keywordAuthorspiking neural networks-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE