Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Woong-
dc.contributor.authorChoi, Yongjun-
dc.contributor.authorChoi, Eunsuh-
dc.contributor.authorYun, Hyewon-
dc.contributor.authorJung, Wonsang-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorWon, Da Hye-
dc.contributor.authorNa, Jonggeol-
dc.contributor.authorHwang, Yun Jeong-
dc.date.accessioned2024-01-19T12:03:01Z-
dc.date.available2024-01-19T12:03:01Z-
dc.date.created2022-04-29-
dc.date.issued2022-05-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115236-
dc.description.abstractA zero-gap membrane-electrode assembly (MEA) electrolyzer is a promising design for electrochemical CO2 reduction reactions (eCO(2)RRs), where gaseous CO2 is directly fed without catholyte. The zero-gap junction between the catalyst and the membrane can have distinct chemical environments and mass transfer properties from the conventional H-type cell but is rarely studied. In this work, we designed an integrated experimental-simulation study in MEA to understand the zero-gap junction and factors to determine the eCO(2)RR activity to multi-carbon production. We developed a simple synchronous ionomer/catalyst activation step under alkaline conditions to form jagged CuO nanoparticles whose unique morphological evolution facilitates the C2+ chemical production for the zero-gap MEA electrolyzer. Moreover, under gas-fed and high-current density conditions, computational fluid dynamics suggests that the mass transfer limitation of water as a proton source across the catalyst-membrane layer and cathode kinetic overpotential are critical to determining C2+ chemical production in the range of several micrometers. From the chemical-physical understanding, we achieved a high partial current density of 336.5 mA cm(-2) and a faradaic efficiency of 67.3% towards C2+ chemicals.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleMicroenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO2 electrolysis to C2+ products-
dc.typeArticle-
dc.identifier.doi10.1039/d1ta10939a-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.10, no.19, pp.10363 - 10372-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume10-
dc.citation.number19-
dc.citation.startPage10363-
dc.citation.endPage10372-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000782472600001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusETHYLENE-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusELECTROCHEMICAL CONVERSION-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE