Full metadata record

DC Field Value Language
dc.contributor.authorJang, Jisu-
dc.contributor.authorRa, Hyun-Soo-
dc.contributor.authorAhn, Jongtae-
dc.contributor.authorKim, Tae Wook-
dc.contributor.authorSong, Seung Ho-
dc.contributor.authorPark, Soohyung-
dc.contributor.authorTaniguch, Takashi-
dc.contributor.authorWatanabe, Kenji-
dc.contributor.authorLee, Kimoon-
dc.contributor.authorHwang, Do Kyung-
dc.date.accessioned2024-01-19T12:03:11Z-
dc.date.available2024-01-19T12:03:11Z-
dc.date.created2022-04-21-
dc.date.issued2022-05-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115244-
dc.description.abstractPrecise control over the polarity of transistors is a key necessity for the construction of complementary metal-oxide-semiconductor circuits. However, the polarity control of 2D transistors remains a challenge because of the lack of a high-work-function electrode that completely eliminates Fermi-level pinning at metal-semiconductor interfaces. Here, a creation of clean van der Waals contacts is demonstrated, wherein a metallic 2D material, chlorine-doped SnSe2 (Cl-SnSe2), is used as the high-work-function contact, providing an interface that is free of defects and Fermi-level pinning. Such clean contacts made from Cl-SnSe2 can pose nearly ideal Schottky barrier heights, following the Schottky-Mott limit and thus permitting polarity-controllable transistors. With the integration of Cl-SnSe2 as contacts, WSe2 transistors exhibit pronounced p-type characteristics, which are distinctly different from those of the devices with evaporated metal contacts, where n-type transport is observed. Finally, this ability to control the polarity enables the fabrication of functional logic gates and circuits, including inverter, NAND, and NOR.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleFermi-Level Pinning-Free WSe2 Transistors via 2D Van der Waals Metal Contacts and Their Circuits-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202109899-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials, v.34, no.19, pp.2109899-
dc.citation.titleAdvanced Materials-
dc.citation.volume34-
dc.citation.number19-
dc.citation.startPage2109899-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000777607000001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordAuthor2D materials-
dc.subject.keywordAuthorcomplementary metal-oxide-semiconductors-
dc.subject.keywordAuthorFermi-level pinning-
dc.subject.keywordAuthorSchottky-Mott limit-
dc.subject.keywordAuthorvan der Waals contacts-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE